OSMamba: Omnidirectional Spectral Mamba with Dual-Domain Prior Generator for Exposure Correction
- URL: http://arxiv.org/abs/2411.15255v1
- Date: Fri, 22 Nov 2024 08:54:16 GMT
- Title: OSMamba: Omnidirectional Spectral Mamba with Dual-Domain Prior Generator for Exposure Correction
- Authors: Gehui Li, Bin Chen, Chen Zhao, Lei Zhang, Jian Zhang,
- Abstract summary: We propose Omnidirectional Spectral Mamba (OSMamba), a novel exposure correction network.
OSMamba introduces an omnidirectional spectral scanning mechanism that adapts Mamba to the frequency domain.
We develop a dual-domain prior generator that learns from well-exposed images to generate a degradation-free diffusion prior.
- Score: 15.884868711123993
- License:
- Abstract: Exposure correction is a fundamental problem in computer vision and image processing. Recently, frequency domain-based methods have achieved impressive improvement, yet they still struggle with complex real-world scenarios under extreme exposure conditions. This is due to the local convolutional receptive fields failing to model long-range dependencies in the spectrum, and the non-generative learning paradigm being inadequate for retrieving lost details from severely degraded regions. In this paper, we propose Omnidirectional Spectral Mamba (OSMamba), a novel exposure correction network that incorporates the advantages of state space models and generative diffusion models to address these limitations. Specifically, OSMamba introduces an omnidirectional spectral scanning mechanism that adapts Mamba to the frequency domain to capture comprehensive long-range dependencies in both the amplitude and phase spectra of deep image features, hence enhancing illumination correction and structure recovery. Furthermore, we develop a dual-domain prior generator that learns from well-exposed images to generate a degradation-free diffusion prior containing correct information about severely under- and over-exposed regions for better detail restoration. Extensive experiments on multiple-exposure and mixed-exposure datasets demonstrate that the proposed OSMamba achieves state-of-the-art performance both quantitatively and qualitatively.
Related papers
- Retinex-RAWMamba: Bridging Demosaicing and Denoising for Low-Light RAW Image Enhancement [71.13353154514418]
Low-light image enhancement, particularly in cross-domain tasks such as mapping from the raw domain to the sRGB domain, remains a significant challenge.
We present a novel Mamba scanning mechanism, called RAWMamba, to effectively handle raw images with different CFAs.
We also present a Retinex Decomposition Module (RDM) grounded in Retinex prior, which decouples illumination from reflectance to facilitate more effective denoising and automatic non-linear exposure correction.
arXiv Detail & Related papers (2024-09-11T06:12:03Z) - A Hybrid Transformer-Mamba Network for Single Image Deraining [70.64069487982916]
Existing deraining Transformers employ self-attention mechanisms with fixed-range windows or along channel dimensions.
We introduce a novel dual-branch hybrid Transformer-Mamba network, denoted as TransMamba, aimed at effectively capturing long-range rain-related dependencies.
arXiv Detail & Related papers (2024-08-31T10:03:19Z) - A Dual Domain Multi-exposure Image Fusion Network based on the
Spatial-Frequency Integration [57.14745782076976]
Multi-exposure image fusion aims to generate a single high-dynamic image by integrating images with different exposures.
We propose a novelty perspective on multi-exposure image fusion via the Spatial-Frequency Integration Framework, named MEF-SFI.
Our method achieves visual-appealing fusion results against state-of-the-art multi-exposure image fusion approaches.
arXiv Detail & Related papers (2023-12-17T04:45:15Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Holistic Dynamic Frequency Transformer for Image Fusion and Exposure Correction [18.014481087171657]
The correction of exposure-related issues is a pivotal component in enhancing the quality of images.
This paper proposes a novel methodology that leverages the frequency domain to improve and unify the handling of exposure correction tasks.
Our proposed method achieves state-of-the-art results, paving the way for more sophisticated and unified solutions in exposure correction.
arXiv Detail & Related papers (2023-09-03T14:09:14Z) - Fearless Luminance Adaptation: A Macro-Micro-Hierarchical Transformer
for Exposure Correction [65.5397271106534]
A single neural network is difficult to handle all exposure problems.
In particular, convolutions hinder the ability to restore faithful color or details on extremely over-/under- exposed regions.
We propose a Macro-Micro-Hierarchical transformer, which consists of a macro attention to capture long-range dependencies, a micro attention to extract local features, and a hierarchical structure for coarse-to-fine correction.
arXiv Detail & Related papers (2023-09-02T09:07:36Z) - Fluctuation-based deconvolution in fluorescence microscopy using
plug-and-play denoisers [2.236663830879273]
spatial resolution of images of living samples obtained by fluorescence microscopes is physically limited due to the diffraction of visible light.
Several deconvolution and super-resolution techniques have been proposed to overcome this limitation.
arXiv Detail & Related papers (2023-03-20T15:43:52Z) - Frequency-Aware Self-Supervised Monocular Depth Estimation [41.97188738587212]
We present two versatile methods to enhance self-supervised monocular depth estimation models.
The high generalizability of our methods is achieved by solving the fundamental and ubiquitous problems in photometric loss function.
We are the first to propose blurring images to improve depth estimators with an interpretable analysis.
arXiv Detail & Related papers (2022-10-11T14:30:26Z) - PC-GANs: Progressive Compensation Generative Adversarial Networks for
Pan-sharpening [50.943080184828524]
We propose a novel two-step model for pan-sharpening that sharpens the MS image through the progressive compensation of the spatial and spectral information.
The whole model is composed of triple GANs, and based on the specific architecture, a joint compensation loss function is designed to enable the triple GANs to be trained simultaneously.
arXiv Detail & Related papers (2022-07-29T03:09:21Z) - Dual-Stage Approach Toward Hyperspectral Image Super-Resolution [21.68598210467761]
We propose a new structure for hyperspectral image super-resolution (DualSR)
In coarse stage, five bands with high similarity in a certain spectral range are divided into three groups, and the current band is guided to study the potential knowledge.
In fine stage, an enhanced back-projection method via spectral angle constraint is developed to learn the content of spatial-spectral consistency.
arXiv Detail & Related papers (2022-04-09T04:36:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.