論文の概要: An explainable three dimension framework to uncover learning patterns: A unified look in variable sulci recognition
- arxiv url: http://arxiv.org/abs/2309.00903v4
- Date: Mon, 8 Jul 2024 11:07:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 03:38:37.195558
- Title: An explainable three dimension framework to uncover learning patterns: A unified look in variable sulci recognition
- Title(参考訳): 学習パターンを明らかにするための説明可能な3次元フレームワーク
- Authors: Michail Mamalakis, Heloise de Vareilles, Atheer AI-Manea, Samantha C. Mitchell, Ingrid Arartz, Lynn Egeland Morch-Johnsen, Jane Garrison, Jon Simons, Pietro Lio, John Suckling, Graham Murray,
- Abstract要約: 3次元(3D)大域的な説明は神経イメージングに不可欠である。
我々は、堅牢で忠実で、複雑でないグローバルな説明を提供する、説明可能な人工知能(XAI)の3Dフレームワークを開発する。
- 参考スコア(独自算出の注目度): 2.960322639147262
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The significant features identified in a representative subset of the dataset during the learning process of an artificial intelligence model are referred to as a 'global' explanation. Three-dimensional (3D) global explanations are crucial in neuroimaging where a complex representational space demands more than basic two-dimensional interpretations. Curently, studies in the literature lack accurate, low-complexity, and 3D global explanations in neuroimaging and beyond. To fill this gap, we develop a novel explainable artificial intelligence (XAI) 3D-Framework that provides robust, faithful, and low-complexity global explanations. We evaluated our framework on various 3D deep learning networks trained, validated, and tested on a well-annotated cohort of 596 MRI images. The focus of detection was on the presence or absence of the paracingulate sulcus, a highly variable feature of brain topology associated with symptoms of psychosis. Our proposed 3D-Framework outperformed traditional XAI methods in terms of faithfulness for global explanations. As a result, these explanations uncovered new patterns that not only enhance the credibility and reliability of the training process but also reveal the broader developmental landscape of the human cortex. Our XAI 3D-Framework proposes for the first time, a way to utilize global explanations to discover the context in which detection of specific features are embedded, opening our understanding of normative brain development and atypical trajectories that can lead to the emergence of mental illness.
- Abstract(参考訳): 人工知能モデルの学習過程においてデータセットの代表的なサブセットで識別される重要な特徴を「グローバル」説明と呼ぶ。
3次元のグローバルな説明は、複雑な表現空間が基本的な2次元の解釈以上のものを要求する神経イメージングにおいて重要である。
文学における研究は、神経画像などにおける正確さ、低複雑さ、そして3Dグローバルな説明が欠如している。
このギャップを埋めるために、我々は、堅牢で忠実で、複雑でないグローバルな説明を提供する、説明可能な人工知能(XAI)の3Dフレームワークを開発した。
我々は,596個のMRI画像の注釈付きコホートを用いて,訓練,検証,検証を行う様々な3次元ディープラーニングネットワーク上でのフレームワークの評価を行った。
検出の焦点は、精神病の症状に関連する脳のトポロジーの高度に変動する特徴である視索性サルクスの存在の有無であった。
提案した3Dフレームワークは,グローバルな説明に対する忠実さの観点から従来のXAI手法よりも優れていた。
その結果、これらの説明はトレーニングプロセスの信頼性と信頼性を高めるだけでなく、ヒト大脳皮質のより広い発達環境を明らかにする新しいパターンを明らかにした。
我々のXAI 3D-Frameworkは、グローバルな説明を利用して、特定の特徴の検出が組み込まれている状況を発見し、規範的脳発達の理解と、精神疾患の出現につながる非典型的軌跡の理解を深める方法として、初めて提案する。
関連論文リスト
- Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
本研究では,実世界のパターンを持つ多様な合成シーンを生成可能なベイズネットワークを提案する。
一連の実験は、既存の最先端の事前学習手法に比べて、我々の手法が一貫した優位性を示す。
論文 参考訳(メタデータ) (2024-06-17T07:43:53Z) - Neural 3D decoding for human vision diagnosis [76.41771117405973]
われわれは、AIが2D視覚から視覚的に可視で機能的により包括的な脳信号からデコードされた3D視覚へと進化することで、現在の最先端技術を超えることができることを示す。
本研究では、2D画像で提示された被験者のfMRIデータを入力として、対応する3Dオブジェクト視覚を出力する新しい3Dオブジェクト表現学習手法であるBrain3Dを設計する。
論文 参考訳(メタデータ) (2024-05-24T06:06:11Z) - Solving the enigma: Deriving optimal explanations of deep networks [3.9584068556746246]
本稿では,ディープネットワークの説明可能性を高めるための新しいフレームワークを提案する。
本フレームワークは,確立したXAI手法の様々な説明を統合し,非説明を用いて最適な説明を構築する。
以上の結果から,特定基準に基づく最適説明が導出可能であることが示唆された。
論文 参考訳(メタデータ) (2024-05-16T11:49:08Z) - Neuro-Vision to Language: Enhancing Visual Reconstruction and Language Interaction through Brain Recordings [8.63068449082585]
非侵襲的な脳記録の復号化は、人間の認知の理解を深める鍵となる。
本研究では,視覚変換器を用いた3次元脳構造と視覚的意味論を統合した。
マルチモーダル大モデル開発を支援するために,fMRI画像関連テキストデータを用いたfMRIデータセットを改良した。
論文 参考訳(メタデータ) (2024-04-30T10:41:23Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - DUE: Dynamic Uncertainty-Aware Explanation Supervision via 3D Imputation [12.96084790953902]
本稿では3次元説明指導のための動的不確実性対応説明監督(DUE)フレームワークを提案する。
提案手法は,様々な実世界の医療画像データセットに関する総合的な実験を通じて検証される。
論文 参考訳(メタデータ) (2024-03-16T06:49:32Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical
Development Patterns of Preterm Infants [73.85768093666582]
我々はNeuroExplainerと呼ばれる説明可能な幾何学的深層ネットワークを提案する。
NeuroExplainerは、早産に伴う幼児の皮質発達パターンの解明に使用される。
論文 参考訳(メタデータ) (2023-01-01T12:48:12Z) - An explainability framework for cortical surface-based deep learning [110.83289076967895]
我々は,皮質表面の深層学習のためのフレームワークを開発した。
まず,表面データに摂動に基づくアプローチを適用した。
我々の説明可能性フレームワークは,重要な特徴とその空間的位置を識別できるだけでなく,信頼性と有効性も示している。
論文 参考訳(メタデータ) (2022-03-15T23:16:49Z) - Joint Supervised and Self-Supervised Learning for 3D Real-World
Challenges [16.328866317851187]
ポイントクラウド処理と3D形状理解は、ディープラーニング技術が大きな可能性を実証する難しいタスクである。
ここでは、データ不足と大きなドメインギャップにより教師付き学習が失敗する合成および実世界の点雲を含むいくつかのシナリオについて考察する。
形状分類や部分分割の主課題を学習しながら3次元パズルを解くマルチタスクモデルにより、自己超越を利用して、標準的な特徴表現を豊かにすることを提案する。
論文 参考訳(メタデータ) (2020-04-15T23:34:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。