論文の概要: Solving the enigma: Deriving optimal explanations of deep networks
- arxiv url: http://arxiv.org/abs/2405.10008v1
- Date: Thu, 16 May 2024 11:49:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 14:31:57.675291
- Title: Solving the enigma: Deriving optimal explanations of deep networks
- Title(参考訳): エニグマの解法:ディープネットワークの最適説明の導出
- Authors: Michail Mamalakis, Antonios Mamalakis, Ingrid Agartz, Lynn Egeland Mørch-Johnsen, Graham Murray, John Suckling, Pietro Lio,
- Abstract要約: 本稿では,ディープネットワークの説明可能性を高めるための新しいフレームワークを提案する。
本フレームワークは,確立したXAI手法の様々な説明を統合し,非説明を用いて最適な説明を構築する。
以上の結果から,特定基準に基づく最適説明が導出可能であることが示唆された。
- 参考スコア(独自算出の注目度): 3.9584068556746246
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The accelerated progress of artificial intelligence (AI) has popularized deep learning models across domains, yet their inherent opacity poses challenges, notably in critical fields like healthcare, medicine and the geosciences. Explainable AI (XAI) has emerged to shed light on these "black box" models, helping decipher their decision making process. Nevertheless, different XAI methods yield highly different explanations. This inter-method variability increases uncertainty and lowers trust in deep networks' predictions. In this study, for the first time, we propose a novel framework designed to enhance the explainability of deep networks, by maximizing both the accuracy and the comprehensibility of the explanations. Our framework integrates various explanations from established XAI methods and employs a non-linear "explanation optimizer" to construct a unique and optimal explanation. Through experiments on multi-class and binary classification tasks in 2D object and 3D neuroscience imaging, we validate the efficacy of our approach. Our explanation optimizer achieved superior faithfulness scores, averaging 155% and 63% higher than the best performing XAI method in the 3D and 2D applications, respectively. Additionally, our approach yielded lower complexity, increasing comprehensibility. Our results suggest that optimal explanations based on specific criteria are derivable and address the issue of inter-method variability in the current XAI literature.
- Abstract(参考訳): 人工知能(AI)の急速な進歩は、ドメイン間でディープラーニングモデルを普及させたが、その固有の不透明さは、特に医療、医学、地球科学といった重要な分野において、課題を引き起こしている。
説明可能なAI(XAI)は、これらの“ブラックボックス”モデルに光を当てて、意思決定プロセスの解読を支援している。
しかしながら、異なるXAI法は、非常に異なる説明をもたらす。
このメソッド間の変動は不確実性を高め、ディープネットワークの予測に対する信頼を低下させる。
本研究では,提案手法の精度と説明の理解性の両方を最大化することにより,深層ネットワークの説明可能性を高める新しい枠組みを提案する。
本フレームワークは,確立されたXAI手法の様々な説明を統合し,非線形な「説明最適化」を用いて,一意かつ最適な説明を構築する。
2次元オブジェクトと3次元神経科学イメージングにおける多クラス・バイナリ分類タスクの実験を通じて,本手法の有効性を検証した。
提案手法は, 3Dおよび2Dアプリケーションにおいて, XAI法の平均値は平均155%, 63%であった。
さらに、我々のアプローチは複雑さを減らし、理解力を高めました。
本稿は,特定の基準に基づく最適説明が導出可能であることを示唆し,現在のXAI文献におけるメソッド間変動の問題に対処するものである。
関連論文リスト
- Does Faithfulness Conflict with Plausibility? An Empirical Study in Explainable AI across NLP Tasks [9.979726030996051]
私たちは、Shapleyの価値とLIMEがより忠実で妥当性が高いことを示す。
この結果から,一方の次元を一方の次元に最適化するのではなく,2つの目的を持つ説明可能性アルゴリズムを最適化する可能性が示唆された。
論文 参考訳(メタデータ) (2024-03-29T20:28:42Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
人工知能,特に深層学習(DL)の最近の進歩を概観する。
ハイブリッドおよび純粋機械学習(ML)の手法について論じる。
AIの歴史と限界は、特に古典の誤解や誤解を指摘し、議論され、議論される。
論文 参考訳(メタデータ) (2022-12-18T02:03:00Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
自動対物生成は、生成した対物インスタンスのいくつかの側面を考慮すべきである。
本稿では, 対実例生成のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2022-05-20T15:02:53Z) - Explainable Artificial Intelligence for Bayesian Neural Networks:
Towards trustworthy predictions of ocean dynamics [0.0]
ニューラルネットワークの信頼性は、不確実性を表現したり、スキルを説明する能力が欠けているため、しばしば疑問視される。
気候変動の応用など、高い利害関係の意思決定においてニューラルネットワークの利用が増加していることを考えると、これは問題となる可能性がある。
我々は、パラメータが決定論的ではなく分布であるベイズニューラルネットワーク(BNN)の実装に成功し、説明可能なAI(XAI)技術の新しい実装を適用することにより、両方の問題に対処する。
論文 参考訳(メタデータ) (2022-04-30T08:35:57Z) - Deep Learning Reproducibility and Explainable AI (XAI) [9.13755431537592]
ディープラーニング(DL)学習アルゴリズムの非決定性とそのニューラルネットワーク(NN)モデルの説明可能性への影響について検討した。
この問題について議論するため、2つの畳み込みニューラルネットワーク(CNN)をトレーニングし、その結果を比較した。
論文 参考訳(メタデータ) (2022-02-23T12:06:20Z) - Visualizing the Diversity of Representations Learned by Bayesian Neural
Networks [5.660714085843854]
ベイジアンニューラルネットワーク(BNN)で学習した特徴表現の多様性を探索・可視化するために,XAI手法がどう利用できるかを検討する。
我々の研究は、人間の理解可能な特徴情報の観点から、下層の意思決定戦略に関して、後天的な分布に関する新たな洞察を提供する。
論文 参考訳(メタデータ) (2022-01-26T10:40:55Z) - Evaluating Explainable Artificial Intelligence Methods for Multi-label
Deep Learning Classification Tasks in Remote Sensing [0.0]
ベンチマークデータセットで最先端のパフォーマンスを持つディープラーニングモデルを開発した。
モデル予測の理解と解釈に10のXAI手法が用いられた。
Occlusion、Grad-CAM、Limeは、最も解釈可能で信頼性の高いXAIメソッドでした。
論文 参考訳(メタデータ) (2021-04-03T11:13:14Z) - Interpretable Detail-Fidelity Attention Network for Single Image
Super-Resolution [89.1947690981471]
本研究では,スムースとディテールを段階的に分割・収束的に処理する,目的・解釈可能なディテール・ファイダリティ・アテンション・ネットワークを提案する。
特に,詳細推論において顕著な解釈可能な特徴表現のためのヘシアンフィルタを提案する。
実験により,提案手法は最先端手法よりも優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2020-09-28T08:31:23Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z) - Binary Neural Networks: A Survey [126.67799882857656]
バイナリニューラルネットワークは、リソース制限されたデバイスにディープモデルをデプロイするための有望なテクニックとして機能する。
バイナライゼーションは必然的に深刻な情報損失を引き起こし、さらに悪いことに、その不連続性はディープネットワークの最適化に困難をもたらす。
本稿では,2項化を直接実施するネイティブソリューションと,量子化誤差の最小化,ネットワーク損失関数の改善,勾配誤差の低減といった手法を用いて,これらのアルゴリズムを探索する。
論文 参考訳(メタデータ) (2020-03-31T16:47:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。