論文の概要: NTU4DRadLM: 4D Radar-centric Multi-Modal Dataset for Localization and
Mapping
- arxiv url: http://arxiv.org/abs/2309.00962v1
- Date: Sat, 2 Sep 2023 15:12:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 00:09:02.319870
- Title: NTU4DRadLM: 4D Radar-centric Multi-Modal Dataset for Localization and
Mapping
- Title(参考訳): NTU4DRadLM:局所化とマッピングのための4次元レーダー中心多モードデータセット
- Authors: Jun Zhang, Huayang Zhuge, Yiyao Liu, Guohao Peng, Zhenyu Wu, Haoyuan
Zhang, Qiyang Lyu, Heshan Li, Chunyang Zhao, Dogan Kircali, Sanat Mharolkar,
Xun Yang, Su Yi, Yuanzhe Wang and Danwei Wang
- Abstract要約: SLAMは4Dレーダー、サーマルカメラ、IMUをベースとしている。
1)4Dレーダー、サーマルカメラ、IMU、3D LiDAR、ビジュアルカメラ、RTK GPSの6つのセンサーを同時に備えた唯一のデータセットである。
- 参考スコア(独自算出の注目度): 32.0536548410301
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simultaneous Localization and Mapping (SLAM) is moving towards a robust
perception age. However, LiDAR- and visual- SLAM may easily fail in adverse
conditions (rain, snow, smoke and fog, etc.). In comparison, SLAM based on 4D
Radar, thermal camera and IMU can work robustly. But only a few literature can
be found. A major reason is the lack of related datasets, which seriously
hinders the research. Even though some datasets are proposed based on 4D radar
in past four years, they are mainly designed for object detection, rather than
SLAM. Furthermore, they normally do not include thermal camera. Therefore, in
this paper, NTU4DRadLM is presented to meet this requirement. The main
characteristics are: 1) It is the only dataset that simultaneously includes all
6 sensors: 4D radar, thermal camera, IMU, 3D LiDAR, visual camera and RTK GPS.
2) Specifically designed for SLAM tasks, which provides fine-tuned ground truth
odometry and intentionally formulated loop closures. 3) Considered both
low-speed robot platform and fast-speed unmanned vehicle platform. 4) Covered
structured, unstructured and semi-structured environments. 5) Considered both
middle- and large- scale outdoor environments, i.e., the 6 trajectories range
from 246m to 6.95km. 6) Comprehensively evaluated three types of SLAM
algorithms. Totally, the dataset is around 17.6km, 85mins, 50GB and it will be
accessible from this link: https://github.com/junzhang2016/NTU4DRadLM
- Abstract(参考訳): 同時局在マッピング(SLAM)は、堅牢な知覚年齢に向かっている。
しかし、LiDARおよびビジュアルSLAMは、悪条件(雨、雪、煙、霧など)で容易に失敗する可能性がある。
一方、SLAMは4Dレーダ、サーマルカメラ、IMUをベースとしている。
しかし、文献はごくわずかしか見つからなかった。
主な理由は、関連するデータセットがないため、研究を著しく妨げている。
過去4年間、いくつかのデータセットは4Dレーダーに基づいて提案されてきたが、主にSLAMではなくオブジェクト検出のために設計されている。
また、通常は熱カメラは含まない。
そこで本論文では,この要件を満たすため,NTU4DRadLMを提示する。
主な特徴は次の通りである。
1)4Dレーダー、サーマルカメラ、IMU、3D LiDAR、ビジュアルカメラ、RTK GPSの6つのセンサーを同時に含む唯一のデータセットである。
2) SLAMタスクに特化して設計され, 微調整された実測値と意図的に定式化されたループクロージャを提供する。
3)低速ロボットプラットフォームと高速無人車両プラットフォームの両方を考える。
4)非構造・非構造・半構造環境
5) 中・大規模の屋外環境,すなわち6つの軌道は246mから6.95kmである。
6) 3種類のSLAMアルゴリズムを総合的に評価した。
完全なデータセットは、約17.6km、85mins、50gbで、このリンクからアクセスできる。
関連論文リスト
- MSSF: A 4D Radar and Camera Fusion Framework With Multi-Stage Sampling for 3D Object Detection in Autonomous Driving [9.184945917823047]
本研究では,4次元レーダとカメラを用いた簡易かつ効果的なマルチステージサンプリング・フュージョン(MSSF)ネットワークを提案する。
MSSFは、View-of-Delft(VoD)とTJ4DRadsetデータセットの3D平均精度を7.0%と4.0%改善している。
さらには、VoDデータセット上の古典的なLiDARベースのメソッドを超越している。
論文 参考訳(メタデータ) (2024-11-22T15:45:23Z) - Human Detection from 4D Radar Data in Low-Visibility Field Conditions [17.1888913327586]
現代の4Dイメージングレーダは、範囲、垂直角度、水平角度、ドップラー速度の寸法にわたってターゲット応答を提供する。
セマンティックセグメンテーションにこの4Dレーダモダリティを利用するCNNアーキテクチャTMVA4Dを提案する。
このデータセット上でTMVA4Dを用いてmIoUスコア78.2%、mDiceスコア86.1%を達成し、背景と人物の2つのクラスで評価した。
論文 参考訳(メタデータ) (2024-04-08T08:53:54Z) - Dual Radar: A Multi-modal Dataset with Dual 4D Radar for Autonomous
Driving [22.633794566422687]
本稿では,2種類の4Dレーダを同時に捕捉した大規模マルチモーダルデータセットについて紹介する。
データセットは151連続して作成され、その大部分は20秒で、10,007の微妙な同期と注釈付きフレームを含んでいる。
我々はデータセットを実験的に検証し、異なる種類の4Dレーダーの研究に有用な結果を提供する。
論文 参考訳(メタデータ) (2023-10-11T15:41:52Z) - ThermRad: A Multi-modal Dataset for Robust 3D Object Detection under
Challenging Conditions [15.925365473140479]
ThermRadと呼ばれる新しいマルチモーダルデータセットは、3D LiDAR、4Dレーダー、RGBカメラ、サーマルカメラを含む。
本研究では4次元レーダーとサーマルカメラの相補的な強度を利用して物体検出性能を向上させるRTDF-RCNNと呼ばれる新しいマルチモーダル融合法を提案する。
本手法は,自動車,歩行者,自転車の検出において,それぞれ7.98%,24.27%,27.15%以上の改善を実現している。
論文 参考訳(メタデータ) (2023-08-20T04:34:30Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
本稿では,既存のレーダ信号処理パイプラインをスキップするEchoFusionという新しい手法を提案する。
具体的には、まずBird's Eye View (BEV)クエリを生成し、次にレーダーから他のセンサーとフューズに対応するスペクトル特徴を取ります。
論文 参考訳(メタデータ) (2023-07-31T09:53:50Z) - Using Detection, Tracking and Prediction in Visual SLAM to Achieve
Real-time Semantic Mapping of Dynamic Scenarios [70.70421502784598]
RDS-SLAMは、一般的に使用されているIntel Core i7 CPUのみを使用して、動的シナリオのためのオブジェクトレベルでのセマンティックマップをリアルタイムで構築することができる。
我々は, TUM RGB-DデータセットにおけるRDS-SLAMを評価し, 動的シナリオにおいて, RDS-SLAMはフレームあたり30.3msで動作可能であることを示した。
論文 参考訳(メタデータ) (2022-10-10T11:03:32Z) - K-Radar: 4D Radar Object Detection for Autonomous Driving in Various
Weather Conditions [9.705678194028895]
KAIST-Radarは、新しい大規模オブジェクト検出データセットとベンチマークである。
4次元レーダーテンソル(4DRT)データの35Kフレームを含み、ドップラー、レンジ、方位、標高の寸法に沿って電力の測定を行う。
我々は、慎重に校正された高分解能ライダー、サラウンドステレオカメラ、RTK-GPSから補助的な測定を行う。
論文 参考訳(メタデータ) (2022-06-16T13:39:21Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
自律運転における3D知覚のための2つの重要なセンサーは、カメラとLiDARである。
これら2つのモダリティを融合させることで、3次元知覚モデルの性能を大幅に向上させることができる。
我々は、最先端の核融合法を初めてベンチマークした。
論文 参考訳(メタデータ) (2022-05-30T09:35:37Z) - PC-DAN: Point Cloud based Deep Affinity Network for 3D Multi-Object
Tracking (Accepted as an extended abstract in JRDB-ACT Workshop at CVPR21) [68.12101204123422]
点雲は3次元座標における空間データの密集したコンパイルである。
我々は3次元多目的追跡(MOT)のためのPointNetベースのアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-03T05:36:39Z) - End-to-End Pseudo-LiDAR for Image-Based 3D Object Detection [62.34374949726333]
擬似LiDAR(PL)は、LiDARセンサに基づく手法と安価なステレオカメラに基づく手法の精度ギャップを劇的に減らした。
PLは最先端のディープニューラルネットワークと2D深度マップ出力を3Dポイントクラウド入力に変換することで3Dオブジェクト検出のための3D深度推定を組み合わせている。
我々は、PLパイプライン全体をエンドツーエンドにトレーニングできるように、差別化可能なRepresentation (CoR)モジュールに基づく新しいフレームワークを導入します。
論文 参考訳(メタデータ) (2020-04-07T02:18:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。