論文の概要: DIDLM: A SLAM Dataset for Difficult Scenarios Featuring Infrared, Depth Cameras, LIDAR, 4D Radar, and Others under Adverse Weather, Low Light Conditions, and Rough Roads
- arxiv url: http://arxiv.org/abs/2404.09622v2
- Date: Tue, 14 Jan 2025 09:22:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 02:44:45.665113
- Title: DIDLM: A SLAM Dataset for Difficult Scenarios Featuring Infrared, Depth Cameras, LIDAR, 4D Radar, and Others under Adverse Weather, Low Light Conditions, and Rough Roads
- Title(参考訳): DIDLM:赤外・深度カメラ・LIDAR・4Dレーダなどを用いた逆気象・低照度・低照度道路における難易度シナリオのためのSLAMデータセット
- Authors: Weisheng Gong, Kaijie Su, Qingyong Li, Chen He, Tong Wu, Z. Jane Wang,
- Abstract要約: 積雪天候,雨天,夜間条件,スピードバンプ,荒地など,困難なシナリオをカバーするマルチセンサデータセットを提案する。
このデータセットには、4Dミリ波レーダー、赤外線カメラ、深度カメラなどの極端な状況に利用されないセンサーと、3D LiDAR、RGBカメラ、GPS、IMUが含まれる。
自律走行と地上ロボットの両方のアプリケーションをサポートし、構造化された地形と半構造化された地形をカバーする信頼性の高いGPS/INS地上真実データを提供する。
- 参考スコア(独自算出の注目度): 20.600516423425688
- License:
- Abstract: Adverse weather conditions, low-light environments, and bumpy road surfaces pose significant challenges to SLAM in robotic navigation and autonomous driving. Existing datasets in this field predominantly rely on single sensors or combinations of LiDAR, cameras, and IMUs. However, 4D millimeter-wave radar demonstrates robustness in adverse weather, infrared cameras excel in capturing details under low-light conditions, and depth images provide richer spatial information. Multi-sensor fusion methods also show potential for better adaptation to bumpy roads. Despite some SLAM studies incorporating these sensors and conditions, there remains a lack of comprehensive datasets addressing low-light environments and bumpy road conditions, or featuring a sufficiently diverse range of sensor data. In this study, we introduce a multi-sensor dataset covering challenging scenarios such as snowy weather, rainy weather, nighttime conditions, speed bumps, and rough terrains. The dataset includes rarely utilized sensors for extreme conditions, such as 4D millimeter-wave radar, infrared cameras, and depth cameras, alongside 3D LiDAR, RGB cameras, GPS, and IMU. It supports both autonomous driving and ground robot applications and provides reliable GPS/INS ground truth data, covering structured and semi-structured terrains. We evaluated various SLAM algorithms using this dataset, including RGB images, infrared images, depth images, LiDAR, and 4D millimeter-wave radar. The dataset spans a total of 18.5 km, 69 minutes, and approximately 660 GB, offering a valuable resource for advancing SLAM research under complex and extreme conditions. Our dataset is available at https://github.com/GongWeiSheng/DIDLM.
- Abstract(参考訳): 逆気象条件、低照度環境、バンピーロード面は、ロボットナビゲーションと自律運転におけるSLAMに重大な課題をもたらす。
既存のデータセットは、主に単一センサーやLiDAR、カメラ、IMUの組み合わせに依存している。
しかし、4Dミリ波レーダーは悪天候の頑丈さを示し、赤外線カメラは低照度条件下で細部を捉え、深度画像はより豊かな空間情報を提供する。
マルチセンサフュージョン法は、バンピー道路への適応性も向上する可能性がある。
これらのセンサーと条件を組み込んだSLAM研究はいくつかあるが、低照度環境や道路条件に対処する包括的なデータセットが不足している。
本研究では,積雪,雨天,夜間条件,スピードバンプ,荒地など,困難なシナリオをカバーするマルチセンサ・データセットを提案する。
このデータセットには、4Dミリ波レーダー、赤外線カメラ、深度カメラなどの極端な状況に利用されないセンサーと、3D LiDAR、RGBカメラ、GPS、IMUが含まれる。
自律走行と地上ロボットの両方のアプリケーションをサポートし、構造化された地形と半構造化された地形をカバーする、信頼できるGPS/INS地上真実データを提供する。
RGB画像,赤外線画像,深度画像,LiDAR,4Dミリ波レーダなど,様々なSLAMアルゴリズムの評価を行った。
データセットは合計で18.5km、69分、約660GBで、複雑で極端な条件下でSLAM研究を進めるための貴重な資源を提供する。
私たちのデータセットはhttps://github.com/GongWeiSheng/DIDLMで公開されています。
関連論文リスト
- RobuRCDet: Enhancing Robustness of Radar-Camera Fusion in Bird's Eye View for 3D Object Detection [68.99784784185019]
暗い照明や悪天候はカメラの性能を低下させる。
レーダーは騒音と位置のあいまいさに悩まされる。
本稿では,BEVの頑健な物体検出モデルであるRobuRCDetを提案する。
論文 参考訳(メタデータ) (2025-02-18T17:17:38Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法では,暗黙的ニューラルジオメトリとリフレクタンスモデルを用いて,暗黙的な物理インフォームドセンサモデルを構築し,生のレーダ測定を直接合成する。
本研究では,密集した車両やインフラを備えた都市景観を含む,多様な屋外シナリオにおける手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-07T20:44:48Z) - NTU4DRadLM: 4D Radar-centric Multi-Modal Dataset for Localization and
Mapping [32.0536548410301]
SLAMは4Dレーダー、サーマルカメラ、IMUをベースとしている。
1)4Dレーダー、サーマルカメラ、IMU、3D LiDAR、ビジュアルカメラ、RTK GPSの6つのセンサーを同時に備えた唯一のデータセットである。
論文 参考訳(メタデータ) (2023-09-02T15:12:20Z) - ThermRad: A Multi-modal Dataset for Robust 3D Object Detection under
Challenging Conditions [15.925365473140479]
ThermRadと呼ばれる新しいマルチモーダルデータセットは、3D LiDAR、4Dレーダー、RGBカメラ、サーマルカメラを含む。
本研究では4次元レーダーとサーマルカメラの相補的な強度を利用して物体検出性能を向上させるRTDF-RCNNと呼ばれる新しいマルチモーダル融合法を提案する。
本手法は,自動車,歩行者,自転車の検出において,それぞれ7.98%,24.27%,27.15%以上の改善を実現している。
論文 参考訳(メタデータ) (2023-08-20T04:34:30Z) - DensePose From WiFi [86.61881052177228]
WiFi信号の位相と振幅を24のヒト領域内の紫外線座標にマッピングするディープニューラルネットワークを開発した。
本モデルでは,複数の被験者の密集したポーズを,画像に基づくアプローチと同等の性能で推定することができる。
論文 参考訳(メタデータ) (2022-12-31T16:48:43Z) - MIPI 2022 Challenge on RGBW Sensor Fusion: Dataset and Report [90.34148262169595]
本稿では,新しい画像センサと撮像アルゴリズムに着目した5つのトラックを含む,最初のMIPI課題を紹介する。
参加者は、高品質なRGBWとBayerペアの70(トレーニング)と15(検証)シーンを含む、新しいデータセットを与えられた。
すべてのデータは、屋外と屋内の両方でRGBWセンサーで撮影されました。
論文 参考訳(メタデータ) (2022-09-15T05:56:53Z) - K-Radar: 4D Radar Object Detection for Autonomous Driving in Various
Weather Conditions [9.705678194028895]
KAIST-Radarは、新しい大規模オブジェクト検出データセットとベンチマークである。
4次元レーダーテンソル(4DRT)データの35Kフレームを含み、ドップラー、レンジ、方位、標高の寸法に沿って電力の測定を行う。
我々は、慎重に校正された高分解能ライダー、サラウンドステレオカメラ、RTK-GPSから補助的な測定を行う。
論文 参考訳(メタデータ) (2022-06-16T13:39:21Z) - All-Weather Object Recognition Using Radar and Infrared Sensing [1.7513645771137178]
この論文は、物体を認識するために、長波偏光赤外線(IR)画像とイメージングレーダに基づく新しいセンシング開発を探求する。
まず、偏光赤外データを用いたストークスパラメータに基づく手法を開発し、深層ニューラルネットワークを用いた車両の認識を行った。
第2に、低THzレーダセンサで捉えたパワースペクトルのみを用いて、制御されたシナリオで物体認識を行う可能性について検討した。
最後に、悪天候下で車両を検出するレーダーロバスト性を示す多くの異なる気象シナリオを備えた、"ワイルド"に新しい大規模なデータセットを作成しました。
論文 参考訳(メタデータ) (2020-10-30T14:16:39Z) - RADIATE: A Radar Dataset for Automotive Perception in Bad Weather [13.084162751635239]
RADIATEには3時間のアノテートされたレーダー画像があり、合計で200万以上の俳優がいる。
様々な天候条件下で8種類の俳優をカバーしている。
RADIATEにはステレオ画像、32チャンネルのLiDAR、GPSデータもあり、他のアプリケーションに向けられている。
論文 参考訳(メタデータ) (2020-10-18T19:33:27Z) - LIBRE: The Multiple 3D LiDAR Dataset [54.25307983677663]
We present LIBRE: LiDAR Benchmarking and Reference, a first-of-in-kind dataset with 10 different LiDAR sensor。
LIBREは、現在利用可能なLiDARを公平に比較するための手段を提供するために、研究コミュニティに貢献する。
また、既存の自動運転車やロボティクス関連のソフトウェアの改善も促進する。
論文 参考訳(メタデータ) (2020-03-13T06:17:39Z) - Drone-based RGB-Infrared Cross-Modality Vehicle Detection via
Uncertainty-Aware Learning [59.19469551774703]
ドローンによる車両検出は、空中画像中の車両の位置とカテゴリーを見つけることを目的としている。
我々はDroneVehicleと呼ばれる大規模ドローンベースのRGB赤外線車両検出データセットを構築した。
私たちのDroneVehicleは28,439RGBの赤外線画像を収集し、都市道路、住宅地、駐車場、その他のシナリオを昼から夜までカバーしています。
論文 参考訳(メタデータ) (2020-03-05T05:29:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。