High-efficiency, high-speed, and low-noise photonic quantum memory
- URL: http://arxiv.org/abs/2309.00969v1
- Date: Sat, 2 Sep 2023 15:34:35 GMT
- Title: High-efficiency, high-speed, and low-noise photonic quantum memory
- Authors: Kai Shinbrough, Tegan Loveridge, Benjamin D. Hunt, Sehyun Park,
Kathleen Oolman, Thomas O. Reboli, J. Gary Eden, Virginia O. Lorenz
- Abstract summary: We present a demonstration of simultaneous high-efficiency, high-speed, and low-noise operation of a photonic quantum memory.
We achieve greater than 95% storage efficiency and 26% total efficiency of 880 GHz bandwidth photons, with $mathcalO(10-5)$ noise photons per retrieved pulse.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a demonstration of simultaneous high-efficiency, high-speed, and
low-noise operation of a photonic quantum memory. By leveraging controllable
collisional dephasing in a neutral barium atomic vapor, we demonstrate a
significant improvement in memory efficiency and bandwidth over existing
techniques. We achieve greater than 95% storage efficiency and 26% total
efficiency of 880 GHz bandwidth photons, with $\mathcal{O}(10^{-5})$ noise
photons per retrieved pulse. These ultrabroad bandwidths enable rapid quantum
information processing and contribute to the development of practical quantum
memories with potential applications in quantum communication, computation, and
networking.
Related papers
- Progress towards efficient 4-level photon echo memories [0.0]
We show an efficient (up to 80%) spin-storage quantum memory in Er:YSO.
We demonstrate the storage of 70 temporal modes, with a write time of 150 us, and a storage time of 25 us.
Such a device would have applications in quantum networking and measurement-based quantum computing.
arXiv Detail & Related papers (2024-09-19T06:49:24Z) - Machine-Learning-Enhanced Quantum Optical Storage in Solids [0.0]
Solid-state quantum memories can provide broadband storage, but they primarily suffer from low storage efficiency.
We use passive optimization and machine learning techniques to demonstrate nearly a 6-fold enhancement in quantum memory efficiency.
arXiv Detail & Related papers (2024-04-05T16:14:54Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
We present a quantum memory engineered to meet real-world deployment and scaling challenges.
The memory technology utilizes a warm rubidium vapor as the storage medium, and operates at room temperature.
We demonstrate performance specifications of high-fidelity retrieval (95%) and low operation error $(10-2)$ at a storage time of 160 $mu s$ for single-photon level quantum memory operations.
arXiv Detail & Related papers (2022-05-26T00:33:13Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - On-Demand Storage and Retrieval of Microwave Photons Using a
Superconducting Multiresonator Quantum Memory [8.02214511485348]
A quantum memory that can store quantum states faithfully and retrieve them on demand has wide applications in quantum information science.
We implement a superconducting multi-resonator quantum memory composed of a set of frequency-tunable coplanar transmission line (CPW) resonators.
We demonstrate on-demand storage and retrieval of a time-bin flying qubit.
arXiv Detail & Related papers (2021-11-10T09:38:09Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Efficient quantum memory for single photon polarization qubits [0.21670084965090575]
A quantum memory is a key interface for realizing long-distance quantum communication and large-scale quantum computation.
Here, we report the demonstration of a quantum memory for single-photon polarization qubits with an efficiency of >85% and a fidelity of >99 %.
For the single-channel quantum memory, the optimized efficiency for storing and retrieving single-photon temporal waveforms can be as high as 90.6 %.
arXiv Detail & Related papers (2020-04-07T04:39:54Z) - Improved Light-Matter Interaction for Storage of Quantum States of Light
in a Thulium-Doped Crystal Cavity [2.8353883265392876]
We implement an atomic frequency comb quantum memory for 793 nm wavelength photons.
Results show a memory efficiency of (27.5$pm$ 2.7)% over a 500 MHz bandwidth.
This allows us for the first time to store and recall quantum states of light in such a memory.
arXiv Detail & Related papers (2020-01-30T17:06:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.