Enhancing Quantum Memories with Light-Matter Interference
- URL: http://arxiv.org/abs/2411.17365v2
- Date: Mon, 02 Dec 2024 11:08:22 GMT
- Title: Enhancing Quantum Memories with Light-Matter Interference
- Authors: Paul M. Burdekin, Ilse Maillette de Buy Wenniger, Stephen Sagona-Stophel, Jerzy Szuniewicz, Aonan Zhang, Sarah E. Thomas, Ian A. Walmsley,
- Abstract summary: We present a new approach to enhancing quantum memory protocols by leveraging constructive light-matter interference.
We implement this method in a Raman quantum memory in warm Cesium vapor, and achieve a more than three-fold improvement in total efficiency.
This new protocol is applicable to various memory architectures, paving the way toward scalable, efficient, low-noise, and high-bandwidth quantum memories.
- Score: 2.5882548000462373
- License:
- Abstract: Future optical quantum technologies, including quantum networks and distributed quantum computing and sensing, demand efficient, broadband quantum memories. However, achieving high efficiencies in optical quantum memory protocols is a significant challenge, and typical methods to increase the efficiency can often introduce noise, reduce the bandwidth, or limit scalability. Here, we present a new approach to enhancing quantum memory protocols by leveraging constructive light-matter interference. We implement this method in a Raman quantum memory in warm Cesium vapor, and achieve a more than three-fold improvement in total efficiency reaching $(34.3\pm8.4)\%$, while retaining GHz-bandwidth operation and low noise levels. Numerical simulations predict that this approach can boost efficiencies in systems limited by atomic density, such as cold atomic ensembles, from $65\%$ to beyond $96\%$, while in warm atomic vapors it could reduce the laser intensity to reach a given efficiency by over an order-of-magnitude, and exceed $95\%$ total efficiency. Furthermore, we find that our method preserves the single-mode nature of the memory at significantly higher efficiencies. This new protocol is applicable to various memory architectures, paving the way toward scalable, efficient, low-noise, and high-bandwidth quantum memories.
Related papers
- Route-Forcing: Scalable Quantum Circuit Mapping for Scalable Quantum Computing Architectures [41.39072840772559]
Route-Forcing is a quantum circuit mapping algorithm that shows an average speedup of $3.7times$.
We present a quantum circuit mapping algorithm that shows an average speedup of $3.7times$ compared to the state-of-the-art scalable techniques.
arXiv Detail & Related papers (2024-07-24T14:21:41Z) - Machine-Learning-Enhanced Quantum Optical Storage in Solids [0.0]
Solid-state quantum memories can provide broadband storage, but they primarily suffer from low storage efficiency.
We use passive optimization and machine learning techniques to demonstrate nearly a 6-fold enhancement in quantum memory efficiency.
arXiv Detail & Related papers (2024-04-05T16:14:54Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - High-efficiency, high-speed, and low-noise photonic quantum memory [0.0]
We present a demonstration of simultaneous high-efficiency, high-speed, and low-noise operation of a photonic quantum memory.
We achieve greater than 95% storage efficiency and 26% total efficiency of 880 GHz bandwidth photons, with $mathcalO(10-5)$ noise photons per retrieved pulse.
arXiv Detail & Related papers (2023-09-02T15:34:35Z) - High-fidelity parallel entangling gates on a neutral atom quantum
computer [41.74498230885008]
We report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel.
These advances lay the groundwork for large-scale implementation of quantum algorithms, error-corrected circuits, and digital simulations.
arXiv Detail & Related papers (2023-04-11T18:00:04Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - High-performance cavity-enhanced quantum memory with warm atomic cell [1.0539847330971805]
We report a high-performance cavity-enhanced electromagnetically-induced-transparency memory with warm atomic cell.
It has been experimentally demonstrated that the average fidelities for a set of input coherent states with different phases and amplitudes within a Gaussian distribution have exceeded the classical benchmark fidelities.
arXiv Detail & Related papers (2022-06-17T01:59:26Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
We present a quantum memory engineered to meet real-world deployment and scaling challenges.
The memory technology utilizes a warm rubidium vapor as the storage medium, and operates at room temperature.
We demonstrate performance specifications of high-fidelity retrieval (95%) and low operation error $(10-2)$ at a storage time of 160 $mu s$ for single-photon level quantum memory operations.
arXiv Detail & Related papers (2022-05-26T00:33:13Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Storing short single-photon-level optical pulses in Bose-Einstein
condensates for high-performance quantum memory [0.0]
We implement the Autler-Townes-splitting (ATS) quantum-memory protocol on a Bose-Einstein condensate (BEC) platform.
For 20 ns long-pulses, we achieve an ultra-low-noise memory with an efficiency of 30% and lifetime of 15 $mu$s.
arXiv Detail & Related papers (2020-10-29T17:25:43Z) - Optimization of Broadband $\Lambda$-type Quantum Memory Using Gaussian
Pulses [0.7734726150561088]
We show that for overlapping signal and control fields there exists a unique and broadband pulse duration that optimize the memory efficiency.
We further optimize over the control field temporal delay and pulse duration, demonstrating saturation of this efficiency bound over a broad range of pulse durations.
arXiv Detail & Related papers (2020-08-31T14:19:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.