Building Footprint Extraction in Dense Areas using Super Resolution and
Frame Field Learning
- URL: http://arxiv.org/abs/2309.01656v1
- Date: Mon, 4 Sep 2023 15:15:34 GMT
- Title: Building Footprint Extraction in Dense Areas using Super Resolution and
Frame Field Learning
- Authors: Vuong Nguyen, Anh Ho, Duc-Anh Vu, Nguyen Thi Ngoc Anh, Tran Ngoc Thang
- Abstract summary: Super resolution is employed to enhance the spatial resolution of aerial image, allowing for finer details to be captured.
This enhanced imagery serves as input to a multitask learning module, which consists of a segmentation head and a frame field learning head.
Our model is supervised by adaptive loss weighting, enabling extraction of sharp edges and fine-grained polygons.
- Score: 1.949927790632678
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite notable results on standard aerial datasets, current
state-of-the-arts fail to produce accurate building footprints in dense areas
due to challenging properties posed by these areas and limited data
availability. In this paper, we propose a framework to address such issues in
polygonal building extraction. First, super resolution is employed to enhance
the spatial resolution of aerial image, allowing for finer details to be
captured. This enhanced imagery serves as input to a multitask learning module,
which consists of a segmentation head and a frame field learning head to
effectively handle the irregular building structures. Our model is supervised
by adaptive loss weighting, enabling extraction of sharp edges and fine-grained
polygons which is difficult due to overlapping buildings and low data quality.
Extensive experiments on a slum area in India that mimics a dense area
demonstrate that our proposed approach significantly outperforms the current
state-of-the-art methods by a large margin.
Related papers
- Indoor Scene Reconstruction with Fine-Grained Details Using Hybrid Representation and Normal Prior Enhancement [50.56517624931987]
The reconstruction of indoor scenes from multi-view RGB images is challenging due to the coexistence of flat and texture-less regions.
Recent methods leverage neural radiance fields aided by predicted surface normal priors to recover the scene geometry.
This work aims to reconstruct high-fidelity surfaces with fine-grained details by addressing the above limitations.
arXiv Detail & Related papers (2023-09-14T12:05:29Z) - Building Extraction from Remote Sensing Images via an Uncertainty-Aware
Network [18.365220543556113]
Building extraction plays an essential role in many applications, such as city planning and urban dynamic monitoring.
We propose a novel and straightforward Uncertainty-Aware Network (UANet) to alleviate this problem.
Results demonstrate that the proposed UANet outperforms other state-of-the-art algorithms by a large margin.
arXiv Detail & Related papers (2023-07-23T12:42:15Z) - Building Footprint Extraction with Graph Convolutional Network [20.335884170850193]
Building footprint information is an essential ingredient for 3-D reconstruction of urban models.
Recent developments in deep convolutional neural networks (DCNNs) have enabled accurate pixel-level labeling tasks.
In this work, we have proposed a end-to-end framework to overcome this issue, which uses the graph convolutional network (GCN) for building footprint extraction task.
arXiv Detail & Related papers (2023-05-08T06:50:05Z) - Grid-guided Neural Radiance Fields for Large Urban Scenes [146.06368329445857]
Recent approaches propose to geographically divide the scene and adopt multiple sub-NeRFs to model each region individually.
An alternative solution is to use a feature grid representation, which is computationally efficient and can naturally scale to a large scene.
We present a new framework that realizes high-fidelity rendering on large urban scenes while being computationally efficient.
arXiv Detail & Related papers (2023-03-24T13:56:45Z) - Parallax-Tolerant Unsupervised Deep Image Stitching [57.76737888499145]
We propose UDIS++, a parallax-tolerant unsupervised deep image stitching technique.
First, we propose a robust and flexible warp to model the image registration from global homography to local thin-plate spline motion.
To further eliminate the parallax artifacts, we propose to composite the stitched image seamlessly by unsupervised learning for seam-driven composition masks.
arXiv Detail & Related papers (2023-02-16T10:40:55Z) - Tracking Urbanization in Developing Regions with Remote Sensing
Spatial-Temporal Super-Resolution [82.50301442891602]
We propose a pipeline that leverages a single high-resolution image and a time series of publicly available low-resolution images.
Our method achieves significant improvement in comparison to baselines using single image super-resolution.
arXiv Detail & Related papers (2022-04-04T17:21:20Z) - Sci-Net: a Scale Invariant Model for Building Detection from Aerial
Images [0.0]
We propose a Scale-invariant neural network (Sci-Net) that is able to segment buildings present in aerial images at different spatial resolutions.
Specifically, we modified the U-Net architecture and fused it with dense Atrous Spatial Pyramid Pooling (ASPP) to extract fine-grained multi-scale representations.
arXiv Detail & Related papers (2021-11-12T16:45:20Z) - Cross-Region Building Counting in Satellite Imagery using Counting
Consistency [8.732274235941974]
Estimating the number of buildings in any geographical region is a vital component of urban analysis, disaster management, and public policy decision.
Deep learning methods for building localization and counting in satellite imagery, can serve as a viable and cheap alternative.
However, these algorithms suffer performance degradation when applied to the regions on which they have not been trained.
arXiv Detail & Related papers (2021-10-26T10:36:56Z) - Boundary Regularized Building Footprint Extraction From Satellite Images
Using Deep Neural Network [6.371173732947292]
We propose a novel deep neural network, which enables to jointly detect building instance and regularize noisy building boundary shapes from a single satellite imagery.
Our model can accomplish multi-tasks of object localization, recognition, semantic labelling and geometric shape extraction simultaneously.
arXiv Detail & Related papers (2020-06-23T17:24:09Z) - Refined Plane Segmentation for Cuboid-Shaped Objects by Leveraging Edge
Detection [63.942632088208505]
We propose a post-processing algorithm to align the segmented plane masks with edges detected in the image.
This allows us to increase the accuracy of state-of-the-art approaches, while limiting ourselves to cuboid-shaped objects.
arXiv Detail & Related papers (2020-03-28T18:51:43Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.