論文の概要: ControlMat: A Controlled Generative Approach to Material Capture
- arxiv url: http://arxiv.org/abs/2309.01700v3
- Date: Sat, 27 Jul 2024 16:20:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 00:56:53.584062
- Title: ControlMat: A Controlled Generative Approach to Material Capture
- Title(参考訳): ControlMat: 物質捕獲に対する制御された生成的アプローチ
- Authors: Giuseppe Vecchio, Rosalie Martin, Arthur Roullier, Adrien Kaiser, Romain Rouffet, Valentin Deschaintre, Tamy Boubekeur,
- Abstract要約: 写真からの材料再構成は、3Dコンテンツ生成の民主化の鍵となる要素である。
制御不能な照明を入力とする1枚の写真に拡散モデルを適用し, 可塑性, タイル状, 高解像度の物理ベースデジタル材料を生成する。
- 参考スコア(独自算出の注目度): 7.641962898125423
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Material reconstruction from a photograph is a key component of 3D content creation democratization. We propose to formulate this ill-posed problem as a controlled synthesis one, leveraging the recent progress in generative deep networks. We present ControlMat, a method which, given a single photograph with uncontrolled illumination as input, conditions a diffusion model to generate plausible, tileable, high-resolution physically-based digital materials. We carefully analyze the behavior of diffusion models for multi-channel outputs, adapt the sampling process to fuse multi-scale information and introduce rolled diffusion to enable both tileability and patched diffusion for high-resolution outputs. Our generative approach further permits exploration of a variety of materials which could correspond to the input image, mitigating the unknown lighting conditions. We show that our approach outperforms recent inference and latent-space-optimization methods, and carefully validate our diffusion process design choices. Supplemental materials and additional details are available at: https://gvecchio.com/controlmat/.
- Abstract(参考訳): 写真からの材料再構成は、3Dコンテンツ生成の民主化の鍵となる要素である。
生成深層ネットワークの最近の進歩を生かして、制御された合成問題として、この不適切な問題を定式化することを提案する。
制御不能な照明を入力とする1枚の写真に拡散モデルを適用し, 可塑性, タイル状, 高解像度の物理ベースデジタル材料を生成する。
マルチチャネル出力に対する拡散モデルの挙動を慎重に解析し,サンプリングプロセスを用いてマルチスケール情報を融合し,転動拡散を導入し,高分解能出力に対するタイルビリティとパッチ拡散の両立を可能にする。
我々の生成的アプローチにより、未知の照明条件を緩和し、入力画像に対応する様々な材料を探索することができる。
提案手法は,近年の推論法や潜在空間最適化法よりも優れており,拡散過程の設計選択を慎重に検証する。
補足的な資料と追加の詳細は、https://gvecchio.com/controlmat/.com/で確認できる。
関連論文リスト
- Merging and Splitting Diffusion Paths for Semantically Coherent Panoramas [33.334956022229846]
本稿では,Merge-Attend-Diffuse演算子を提案する。
具体的には、拡散経路をマージし、自己および横断的意図をプログラムし、集約された潜在空間で操作する。
提案手法は,生成した画像の入力プロンプトと視覚的品質との整合性を維持しつつ,セマンティック・コヒーレンスを増大させる。
論文 参考訳(メタデータ) (2024-08-28T09:22:32Z) - IntrinsicAnything: Learning Diffusion Priors for Inverse Rendering Under Unknown Illumination [37.96484120807323]
本稿では,未知の静止照明条件下で撮影されたポーズ画像から対象物質を回収することを目的とする。
我々は、最適化プロセスの正規化のための生成モデルを用いて、その材料を事前に学習する。
実世界および合成データセットを用いた実験により,本手法が材料回収における最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-04-17T17:45:08Z) - Intrinsic Image Diffusion for Indoor Single-view Material Estimation [55.276815106443976]
室内シーンの外観分解のための生成モデルIntrinsic Image Diffusionを提案する。
1つの入力ビューから、アルベド、粗さ、および金属地図として表される複数の材料説明をサンプリングする。
提案手法は,PSNRで1.5dB$,アルベド予測で45%のFIDスコアを達成し,よりシャープで,より一貫性があり,より詳細な資料を生成する。
論文 参考訳(メタデータ) (2023-12-19T15:56:19Z) - Image Inpainting via Tractable Steering of Diffusion Models [54.13818673257381]
本稿では,トラクタブル確率モデル(TPM)の制約後部を正確に,かつ効率的に計算する能力を活用することを提案する。
具体的には、確率回路(PC)と呼ばれる表現型TPMのクラスを採用する。
提案手法は, 画像の全体的な品質とセマンティックコヒーレンスを, 計算オーバーヘッドを10%加えるだけで一貫的に改善できることを示す。
論文 参考訳(メタデータ) (2023-11-28T21:14:02Z) - Global Structure-Aware Diffusion Process for Low-Light Image Enhancement [64.69154776202694]
本稿では,低照度画像強調問題に対処する拡散型フレームワークについて検討する。
我々は、その固有のODE-軌道の正規化を提唱する。
実験により,提案手法は低照度化において優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-10-26T17:01:52Z) - Denoising Diffusion Bridge Models [54.87947768074036]
拡散モデルは、プロセスを使用してデータにノイズをマッピングする強力な生成モデルである。
画像編集のような多くのアプリケーションでは、モデル入力はランダムノイズではない分布から来る。
本研究では, DDBM(Denoising Diffusion Bridge Models)を提案する。
論文 参考訳(メタデータ) (2023-09-29T03:24:24Z) - Diffusion in Diffusion: Cyclic One-Way Diffusion for Text-Vision-Conditioned Generation [11.80682025950519]
本研究では,拡散(機械学習)特性の拡散(物理学)について検討する。
拡散現象の方向を制御するために,循環一流拡散法(COW)を提案する。
本手法は,タスクニーズを理解するための新しい視点を提供し,より広い範囲のカスタマイズシナリオに適用可能である。
論文 参考訳(メタデータ) (2023-06-14T05:25:06Z) - Deceptive-NeRF/3DGS: Diffusion-Generated Pseudo-Observations for High-Quality Sparse-View Reconstruction [60.52716381465063]
我々は,限られた入力画像のみを用いて,スパースビュー再構成を改善するために,Deceptive-NeRF/3DGSを導入した。
具体的には,少数視点再構成によるノイズ画像から高品質な擬似観測へ変換する,偽拡散モデルを提案する。
本システムでは,拡散生成擬似観測をトレーニング画像集合に徐々に組み込んで,スパース入力観測を5倍から10倍に高めている。
論文 参考訳(メタデータ) (2023-05-24T14:00:32Z) - DDRF: Denoising Diffusion Model for Remote Sensing Image Fusion [7.06521373423708]
生成モデルとしてのデノシング拡散モデルは、画像生成の分野で多くの注目を集めている。
画像融合フィールドへの拡散モデルを導入し、画像融合タスクを画像から画像への変換として扱う。
本手法は,画像融合タスクに拡散モデルを適用するために,他の作業に刺激を与え,この分野の洞察を得ることができる。
論文 参考訳(メタデータ) (2023-04-10T12:28:27Z) - DDFM: Denoising Diffusion Model for Multi-Modality Image Fusion [144.9653045465908]
拡散確率モデル(DDPM)に基づく新しい融合アルゴリズムを提案する。
近赤外可視画像融合と医用画像融合で有望な融合が得られた。
論文 参考訳(メタデータ) (2023-03-13T04:06:42Z) - On Conditioning the Input Noise for Controlled Image Generation with
Diffusion Models [27.472482893004862]
条件付き画像生成は、画像編集、ストック写真の生成、および3Dオブジェクト生成におけるいくつかのブレークスルーの道を開いた。
本研究では,入出力ノイズアーチファクトを慎重に構築した条件拡散モデルを提案する。
論文 参考訳(メタデータ) (2022-05-08T13:18:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。