Inferring Actual Treatment Pathways from Patient Records
- URL: http://arxiv.org/abs/2309.01897v3
- Date: Sat, 25 Nov 2023 22:52:24 GMT
- Title: Inferring Actual Treatment Pathways from Patient Records
- Authors: Adrian Wilkins-Caruana, Madhushi Bandara, Katarzyna Musial, Daniel
Catchpoole and Paul J. Kennedy
- Abstract summary: This study aims to infer the actual treatment steps for a particular patient group from administrative health records (AHR)
Defrag is a method for examining AHRs to infer the real-world treatment steps for a particular patient group.
To our knowledge, Defrag is the first pathway-inference method to utilise a neural network (NN), an approach made possible by a novel, self-supervised learning objective.
- Score: 5.353552655309808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Treatment pathways are step-by-step plans outlining the recommended medical
care for specific diseases; they get revised when different treatments are
found to improve patient outcomes. Examining health records is an important
part of this revision process, but inferring patients' actual treatments from
health data is challenging due to complex event-coding schemes and the absence
of pathway-related annotations. This study aims to infer the actual treatment
steps for a particular patient group from administrative health records (AHR) -
a common form of tabular healthcare data - and address several technique- and
methodology-based gaps in treatment pathway-inference research. We introduce
Defrag, a method for examining AHRs to infer the real-world treatment steps for
a particular patient group. Defrag learns the semantic and temporal meaning of
healthcare event sequences, allowing it to reliably infer treatment steps from
complex healthcare data. To our knowledge, Defrag is the first
pathway-inference method to utilise a neural network (NN), an approach made
possible by a novel, self-supervised learning objective. We also developed a
testing and validation framework for pathway inference, which we use to
characterise and evaluate Defrag's pathway inference ability and compare
against baselines. We demonstrate Defrag's effectiveness by identifying
best-practice pathway fragments for breast cancer, lung cancer, and melanoma in
public healthcare records. Additionally, we use synthetic data experiments to
demonstrate the characteristics of the Defrag method, and to compare Defrag to
several baselines where it significantly outperforms non-NN-based methods.
Defrag significantly outperforms several existing pathway-inference methods and
offers an innovative and effective approach for inferring treatment pathways
from AHRs. Open-source code is provided to encourage further research in this
area.
Related papers
- Diffusion-driven SpatioTemporal Graph KANsformer for Medical Examination Recommendation [21.649569475134403]
Recommendation systems in AI-based medical diagnostics and treatment constitute a critical component of AI in healthcare.<n>We first formalize the task of medical examination recommendations.<n>In the first stage, we exploit a task-adaptive diffusion model to distill recommendation-oriented information.<n>In the second stage, a Diffusion graph sformer is proposed to simultaneously model the complex spatial and temporal relationships.
arXiv Detail & Related papers (2025-05-12T10:47:59Z) - A Contrastive Pretrain Model with Prompt Tuning for Multi-center Medication Recommendation [50.43785306804359]
We introduce a novel conTrastive prEtrain Model with Prompt Tuning (TEMPT) for multi-center medication recommendation.
We devise a novel prompt tuning method to capture the specific information of each hospital rather than adopting the common finetuning.
To validate the proposed model, we conduct extensive experiments on the public eICU multi-center medical dataset.
arXiv Detail & Related papers (2024-12-28T06:12:02Z) - Training and Validating a Treatment Recommender with Partial Verification Evidence [1.0693162404690828]
Current clinical decision support systems (DSS) are trained and validated on observational data from the target clinic.
This is problematic for treatments validated in a randomized clinical trial (RCT) but not yet introduced in any clinic.
Key challenges we address are of missingness -- missing rationale for treatment assignment (the assignment is at random), and missing verification evidence.
arXiv Detail & Related papers (2024-06-10T09:23:00Z) - Finding Counterfactually Optimal Action Sequences in Continuous State
Spaces [22.84932480886562]
We describe a sequence of discrete actions and continuous states using finite horizon Markov decision processes.
We then develop a search method based on the $A*$ continuity of the environment's dynamics.
Our method is very efficient in practice, and it has the potential to offer interesting insights for sequential decision making tasks.
arXiv Detail & Related papers (2023-06-06T18:00:29Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
We introduce a model-agnostic pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization.
Experimental findings indicate that our method not only bolsters performance but also effectively curbs variance for various language models.
arXiv Detail & Related papers (2023-03-23T04:47:46Z) - Summarizing Patients Problems from Hospital Progress Notes Using
Pre-trained Sequence-to-Sequence Models [9.879960506853145]
Problem list summarization requires a model to understand, abstract, and generate clinical documentation.
We propose a new NLP task that aims to generate a list of problems in a patient's daily care plan using input from the provider's progress notes during hospitalization.
arXiv Detail & Related papers (2022-08-17T17:07:35Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Federated Cycling (FedCy): Semi-supervised Federated Learning of
Surgical Phases [57.90226879210227]
FedCy is a semi-supervised learning (FSSL) method that combines FL and self-supervised learning to exploit a decentralized dataset of both labeled and unlabeled videos.
We demonstrate significant performance gains over state-of-the-art FSSL methods on the task of automatic recognition of surgical phases.
arXiv Detail & Related papers (2022-03-14T17:44:53Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Learning-based Computer-aided Prescription Model for Parkinson's
Disease: A Data-driven Perspective [61.70045118068213]
We build a dataset by collecting symptoms of PD patients, and their prescription drug provided by neurologists.
Then, we build a novel computer-aided prescription model by learning the relation between observed symptoms and prescription drug.
For the new coming patients, we could recommend (predict) suitable prescription drug on their observed symptoms by our prescription model.
arXiv Detail & Related papers (2020-07-31T14:34:35Z) - DTR Bandit: Learning to Make Response-Adaptive Decisions With Low Regret [59.81290762273153]
Dynamic treatment regimes (DTRs) are personalized, adaptive, multi-stage treatment plans that adapt treatment decisions to an individual's initial features and to intermediate outcomes and features at each subsequent stage.
We propose a novel algorithm that, by carefully balancing exploration and exploitation, is guaranteed to achieve rate-optimal regret when the transition and reward models are linear.
arXiv Detail & Related papers (2020-05-06T13:03:42Z) - Comparative Visual Analytics for Assessing Medical Records with Sequence
Embedding [17.752580010414228]
We develop a visual analytics system to support comparative studies of patient records.
We demonstrate the effectiveness of our design and system with case studies using a real-world dataset from the neonatal intensive care unit of UC Davis.
arXiv Detail & Related papers (2020-02-18T19:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.