Training and Validating a Treatment Recommender with Partial Verification Evidence
- URL: http://arxiv.org/abs/2406.06654v1
- Date: Mon, 10 Jun 2024 09:23:00 GMT
- Title: Training and Validating a Treatment Recommender with Partial Verification Evidence
- Authors: Vishnu Unnikrishnan, Clara Puga, Miro Schleicher, Uli Niemann, Berthod Langguth, Stefan Schoisswohl, Birgit Mazurek, Rilana Cima, Jose Antonio Lopez-Escamez, Dimitris Kikidis, Eleftheria Vellidou, Ruediger Pryss, Winfried Schlee, Myra Spiliopoulou,
- Abstract summary: Current clinical decision support systems (DSS) are trained and validated on observational data from the target clinic.
This is problematic for treatments validated in a randomized clinical trial (RCT) but not yet introduced in any clinic.
Key challenges we address are of missingness -- missing rationale for treatment assignment (the assignment is at random), and missing verification evidence.
- Score: 1.0693162404690828
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Current clinical decision support systems (DSS) are trained and validated on observational data from the target clinic. This is problematic for treatments validated in a randomized clinical trial (RCT), but not yet introduced in any clinic. In this work, we report on a method for training and validating the DSS using the RCT data. The key challenges we address are of missingness -- missing rationale for treatment assignment (the assignment is at random), and missing verification evidence, since the effectiveness of a treatment for a patient can only be verified (ground truth) for treatments what were actually assigned to a patient. We use data from a multi-armed RCT that investigated the effectiveness of single- and combination- treatments for 240+ tinnitus patients recruited and treated in 5 clinical centers. To deal with the 'missing rationale' challenge, we re-model the target variable (outcome) in order to suppress the effect of the randomly-assigned treatment, and control on the effect of treatment in general. Our methods are also robust to missing values in features and with a small number of patients per RCT arm. We deal with 'missing verification evidence' by using counterfactual treatment verification, which compares the effectiveness of the DSS recommendations to the effectiveness of the RCT assignments when they are aligned v/s not aligned. We demonstrate that our approach leverages the RCT data for learning and verification, by showing that the DSS suggests treatments that improve the outcome. The results are limited through the small number of patients per treatment; while our ensemble is designed to mitigate this effect, the predictive performance of the methods is affected by the smallness of the data. We provide a basis for the establishment of decision supporting routines on treatments that have been tested in RCTs but have not yet been deployed clinically.
Related papers
- Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner [72.20769640318969]
Estimating causal quantities from observational data is crucial for understanding the safety and effectiveness of medical treatments.
Medical practitioners require not only estimating averaged causal quantities, but also understanding the randomness of the treatment effect as a random variable.
This randomness is referred to as aleatoric uncertainty and is necessary for understanding the probability of benefit from treatment or quantiles of the treatment effect.
arXiv Detail & Related papers (2024-11-05T18:14:49Z) - Continuous Treatment Effect Estimation Using Gradient Interpolation and
Kernel Smoothing [43.259723628010896]
We advocate the direct approach of augmenting training individuals with independently sampled treatments and inferred counterfactual outcomes.
We evaluate our method on five benchmarks and show that our method outperforms six state-of-the-art methods on the counterfactual estimation error.
arXiv Detail & Related papers (2024-01-27T15:52:58Z) - The R.O.A.D. to precision medicine [5.877778007271621]
We propose a prognostic stratum matching framework that addresses the deficiencies of Randomized trial data subgroup analysis.
We apply our framework to observational data of patients with gastrointestinal stromal tumors (GIST) and validated the OPTs in an external cohort.
arXiv Detail & Related papers (2023-11-03T03:08:15Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - SECRETS: Subject-Efficient Clinical Randomized Controlled Trials using
Synthetic Intervention [0.0]
Cross-over trials can reduce sample size requirements by measuring the treatment effect per individual.
We propose a novel framework, SECRETS, which estimates the individual treatment effect (ITE) per patient in the RCT study without using any external data.
We show that SECRETS can improve the power of an RCT while maintaining comparable significance levels.
arXiv Detail & Related papers (2023-05-08T22:37:16Z) - BITES: Balanced Individual Treatment Effect for Survival data [0.0]
Estimating the effects of interventions on patient outcome is one of the key aspects of personalized medicine.
Time-to-event data is rarely used for treatment optimization.
We suggest an approach named BITES, which combines a treatment-specific semi-parametric Cox loss with a treatment-balanced deep neural network.
arXiv Detail & Related papers (2022-01-05T10:39:31Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
A central obstacle in the objective assessment of treatment effect (TE) estimators in randomized control trials (RCTs) is the lack of ground truth (or validation set) to test their performance.
We provide a novel cross-validation-like methodology to address this challenge.
We evaluate our methodology across 709 RCTs implemented in the Amazon supply chain.
arXiv Detail & Related papers (2021-12-14T17:53:01Z) - Causal Effect Variational Autoencoder with Uniform Treatment [50.895390968371665]
Causal effect variational autoencoder (CEVAE) are trained to predict the outcome given observational treatment data.
Uniform treatment variational autoencoders (UTVAE) are trained with uniform treatment distribution using importance sampling.
arXiv Detail & Related papers (2021-11-16T17:40:57Z) - DTR Bandit: Learning to Make Response-Adaptive Decisions With Low Regret [59.81290762273153]
Dynamic treatment regimes (DTRs) are personalized, adaptive, multi-stage treatment plans that adapt treatment decisions to an individual's initial features and to intermediate outcomes and features at each subsequent stage.
We propose a novel algorithm that, by carefully balancing exploration and exploitation, is guaranteed to achieve rate-optimal regret when the transition and reward models are linear.
arXiv Detail & Related papers (2020-05-06T13:03:42Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
We introduce the Counterfactual Recurrent Network (CRN) to estimate treatment effects over time.
CRN uses domain adversarial training to build balancing representations of the patient history.
We show how our model achieves lower error in estimating counterfactuals and in choosing the correct treatment and timing of treatment.
arXiv Detail & Related papers (2020-02-10T20:47:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.