論文の概要: Understanding Machine Learning Paradigms through the Lens of Statistical Thermodynamics: A tutorial
- arxiv url: http://arxiv.org/abs/2411.15945v1
- Date: Sun, 24 Nov 2024 18:20:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:18:08.759231
- Title: Understanding Machine Learning Paradigms through the Lens of Statistical Thermodynamics: A tutorial
- Title(参考訳): 統計熱力学のレンズによる機械学習パラダイムの理解--チュートリアル
- Authors: Star, Liu,
- Abstract要約: このチュートリアルは、エントロピー、自由エネルギー、そして機械学習に使用される変分推論のような高度なテクニックを掘り下げる。
物理的システムの振る舞いを深く理解することで、より効果的で信頼性の高い機械学習モデルが得られることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This tutorial investigates the convergence of statistical mechanics and learning theory, elucidating the potential enhancements in machine learning methodologies through the integration of foundational principles from physics. The tutorial delves into advanced techniques like entropy, free energy, and variational inference which are utilized in machine learning, illustrating their significant contributions to model efficiency and robustness. By bridging these scientific disciplines, we aspire to inspire newer methodologies in researches, demonstrating how an in-depth comprehension of physical systems' behavior can yield more effective and dependable machine learning models, particularly in contexts characterized by uncertainty.
- Abstract(参考訳): 本チュートリアルでは,統計力学と学習理論の収束を考察し,基礎原理を物理から統合することで,機械学習方法論の潜在的な拡張を解明する。
このチュートリアルは、エントロピー、自由エネルギー、および機械学習で使用される変分推論のような高度なテクニックを掘り下げ、モデル効率と堅牢性に対する彼らの重要な貢献を説明する。
これらの科学的規律をブリッジすることによって、研究において新しい方法論を刺激し、物理的システムの振る舞いを深く理解することで、より効果的で信頼性の高い機械学習モデル、特に不確実性によって特徴づけられる状況において、どのようにして得られるかを示す。
関連論文リスト
- Causal Inference Tools for a Better Evaluation of Machine Learning [0.0]
本稿では、通常最小方形回帰(OLS)、可変解析(ANOVA)、ロジスティック回帰(ロジスティック回帰)などの重要な統計手法を紹介する。
この文書は研究者や実践者のガイドとして機能し、これらのテクニックがモデル行動、パフォーマンス、公平性に対する深い洞察を提供する方法について詳述している。
論文 参考訳(メタデータ) (2024-10-02T10:03:29Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Interpretable Meta-Learning of Physical Systems [4.343110120255532]
最近のメタラーニング手法はブラックボックスニューラルネットワークに依存しており、計算コストが高く、解釈可能性も限られている。
我々は,学習課題に対するアフィン構造を持つ,より単純な学習モデルを用いて,マルチ環境の一般化を実現することができると論じる。
本稿では,物理系の最先端アルゴリズムと比較することにより,競合一般化性能と計算コストの低さを実証する。
論文 参考訳(メタデータ) (2023-12-01T10:18:50Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
本稿では,GBPGRと呼ばれる2段階の確率的グラフィカル推論フレームワークを提案する。
GBPGRでは、シンボル推論の結果を用いて、ディープラーニングモデルによる予測を洗練し、修正する。
提案手法は高い性能を示し, 帰納的タスクと帰納的タスクの両方において効果的な一般化を示す。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - Machine Psychology [54.287802134327485]
我々は、心理学にインスパイアされた行動実験において、研究のための実りある方向が、大きな言語モデルに係わっていると論じる。
本稿では,本手法が表に示す理論的視点,実験パラダイム,計算解析技術について述べる。
これは、パフォーマンスベンチマークを超えた、生成人工知能(AI)のための「機械心理学」の道を開くものだ。
論文 参考訳(メタデータ) (2023-03-24T13:24:41Z) - Symmetry Group Equivariant Architectures for Physics [52.784926970374556]
機械学習の分野では、対称性に対する認識が目覚ましいパフォーマンスのブレークスルーを引き起こしている。
物理学のコミュニティと、より広い機械学習のコミュニティの両方に、理解すべきことがたくさんある、と私たちは主張する。
論文 参考訳(メタデータ) (2022-03-11T18:27:04Z) - Measuring and modeling the motor system with machine learning [117.44028458220427]
モーターシステムの理解における機械学習の有用性は、データの収集、測定、分析の方法に革命をもたらすことを約束している。
本稿では, ポーズ推定, 運動解析, 次元減少, 閉ループフィードバックから, ニューラル相関の理解, 機能停止まで, 機械学習の利用の増大について論じる。
論文 参考訳(メタデータ) (2021-03-22T12:42:16Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Physics guided machine learning using simplified theories [0.0]
機械学習、特にディープラーニングの最近の応用は、物理科学における統計推論アプローチの汎用性に対処する必要性を動機付ける。
このようなデータ駆動予測エンジンの精度を向上させるために,モジュール型物理誘導機械学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-12-18T21:30:40Z) - Using machine-learning modelling to understand macroscopic dynamics in a
system of coupled maps [0.0]
本稿では,グローバルに結合した地図システムから生じるマクロな動きについて考察する。
我々は、機械学習アプローチと粗粒度プロセスの遷移確率の直接数値計算の両方を用いて、マクロ力学のための粗粒度マルコフプロセスを構築した。
我々は,アトラクタの有効次元,メモリ効果の持続性,ダイナミクスのマルチスケール構造について重要な情報を推測することができる。
論文 参考訳(メタデータ) (2020-11-08T15:38:12Z) - Watch and learn -- a generalized approach for transferrable learning in
deep neural networks via physical principles [0.0]
本研究では,物理状態の異なる統計物理学における問題に対して,完全に伝達可能な学習を実現するための教師なし学習手法を実証する。
逐次ニューラルネットワークに基づくシーケンスモデルを広範囲のディープニューラルネットワークに結合することにより、古典的な統計力学系の平衡確率分布と粒子間相互作用モデルを学ぶことができる。
論文 参考訳(メタデータ) (2020-03-03T18:37:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。