Ehrenfest Modeling of Cavity Vacuum Fluctuations and How to Achieve
Emission from a Three-Level Atom
- URL: http://arxiv.org/abs/2309.01912v2
- Date: Tue, 12 Dec 2023 14:43:50 GMT
- Title: Ehrenfest Modeling of Cavity Vacuum Fluctuations and How to Achieve
Emission from a Three-Level Atom
- Authors: Ming-Hsiu Hsieh, Alex Krotz, Roel Tempelaar
- Abstract summary: A classical cavity field interacts self-consistently with quantum states of matter through Ehrenfest's theorem.
We introduce a modified mean-field approach, referred to as decoupled mean-field (DC-MF) dynamics.
We show DC-MF to provide an improved description of reabsorption and (resonant) two-photon emission processes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A much-needed solution for the efficient modeling of strong coupling between
matter and optical cavity modes is offered by mean-field mixed
quantum--classical dynamics, where a classical cavity field interacts
self-consistently with quantum states of matter through Ehrenfest's theorem. We
previously introduced a modified mean-field approach, referred to as decoupled
mean-field (DC-MF) dynamics, wherein vacuum fluctuations of the cavity field
are decoupled from the quantum-mechanical ground state as a means to resolve an
unphysical drawing of energy from the vacuum fluctuations by a two-level atom.
Here, we generalize DC-MF dynamics for an arbitrary number of (nondegenerate)
atomic levels, and show that it resolves an unphysical lack of emission from a
three-level atom predicted by conventional mean-field dynamics. We furthermore
show DC-MF to provide an improved description of reabsorption and (resonant)
two-photon emission processes.
Related papers
- Atom-Field-Medium Interactions I: Graded Influence Actions for $N$ Harmonic Atoms in a Dielectric-Altered Quantum Field [0.0]
We develop the graded influence action formalism citeBehHu10,BH11 to account for the influences of successive sub-layers on the dynamics of the variables of interest.
arXiv Detail & Related papers (2024-08-07T06:33:27Z) - Dynamics of a Generalized Dicke Model for Spin-1 Atoms [0.0]
The Dicke model is a staple of theoretical cavity Quantum Electrodynamics (cavity QED)
It demonstrates a rich variety of dynamics such as phase transitions, phase multistability, and chaos.
The varied and complex behaviours admitted by the model highlights the need to more rigorously map its dynamics.
arXiv Detail & Related papers (2024-03-04T04:09:35Z) - Dynamical Spectral Response of Fractonic Quantum Matter [0.0]
We study the low-energy excitations of a constrained Bose-Hubbard model in one dimension.
We show the existence of gapped excitations compatible with strong coupling results.
arXiv Detail & Related papers (2023-10-24T18:00:01Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Manipulating Generalized Dirac Cones In Quantum Metasurfaces [68.8204255655161]
We consider a collection of single quantum emitters arranged in a honeycomb lattice with subwavelength periodicity.
We show that introducing uniaxial anisotropy in the lattice results in modified dispersion relations.
arXiv Detail & Related papers (2022-03-21T17:59:58Z) - Coherent Atom Transport via Enhanced Shortcuts to Adiabaticity:
Double-Well Optical Lattice [0.0]
We study fast atomic transport in a moving em double-well optical lattice.
We use two classes of quantum-control methods: shortcuts to adiabaticity (STA) and enhanced STA.
This study has direct implications for neutral-atom quantum computing.
arXiv Detail & Related papers (2021-12-28T08:39:49Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Beyond the Rabi model: light interactions with polar atomic systems in a
cavity [0.0]
The Rabi Hamiltonian describes the interaction between a two-level atomic system and a single cavity mode of the electromagnetic field.
In this work we consider the most general Rabi model, incorporating the effects of permanent atomic electric dipole moments.
arXiv Detail & Related papers (2021-03-20T19:54:17Z) - Deterministic single-atom source of quasi-superradiant $N$-photon pulses [62.997667081978825]
Scheme operates with laser and cavity fields detuned from the atomic transition by much more than the excited-state hyperfine splitting.
This enables reduction of the dynamics to that of a simple, cavity-damped Tavis-Cummings model with the collective spin determined by the total angular momentum of the ground hyperfine level.
arXiv Detail & Related papers (2020-12-01T03:55:27Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.