Personalized Federated Deep Reinforcement Learning-based Trajectory
Optimization for Multi-UAV Assisted Edge Computing
- URL: http://arxiv.org/abs/2309.02193v1
- Date: Tue, 5 Sep 2023 12:54:40 GMT
- Title: Personalized Federated Deep Reinforcement Learning-based Trajectory
Optimization for Multi-UAV Assisted Edge Computing
- Authors: Zhengrong Song, Chuan Ma, Ming Ding, Howard H. Yang, Yuwen Qian,
Xiangwei Zhou
- Abstract summary: UAVs can serve as intelligent servers in edge computing environments, optimizing their flight trajectories to maximize communication system throughput.
Deep reinforcement learning (DRL)-based trajectory optimization algorithms may suffer from poor training performance due to intricate terrain features and inadequate training data.
This work proposes a novel solution, namely personalized federated deep reinforcement learning (PF-DRL), for multi-UAV trajectory optimization.
- Score: 22.09756306579992
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of 5G mobile communication, there has been a significant surge in
research focused on unmanned aerial vehicles (UAVs) and mobile edge computing
technology. UAVs can serve as intelligent servers in edge computing
environments, optimizing their flight trajectories to maximize communication
system throughput. Deep reinforcement learning (DRL)-based trajectory
optimization algorithms may suffer from poor training performance due to
intricate terrain features and inadequate training data. To overcome this
limitation, some studies have proposed leveraging federated learning (FL) to
mitigate the data isolation problem and expedite convergence. Nevertheless, the
efficacy of global FL models can be negatively impacted by the high
heterogeneity of local data, which could potentially impede the training
process and even compromise the performance of local agents. This work proposes
a novel solution to address these challenges, namely personalized federated
deep reinforcement learning (PF-DRL), for multi-UAV trajectory optimization.
PF-DRL aims to develop individualized models for each agent to address the data
scarcity issue and mitigate the negative impact of data heterogeneity.
Simulation results demonstrate that the proposed algorithm achieves superior
training performance with faster convergence rates, and improves service
quality compared to other DRL-based approaches.
Related papers
- Wireless Federated Learning over UAV-enabled Integrated Sensing and Communication [2.8203310972866382]
This paper studies a new latency optimization problem in unmanned aerial vehicles (UAVs)-enabled federated learning (FL) with integrated sensing and communication.
We develop a simple yet efficient iterative algorithm to find a high-quality approximate solution, saving system latency up to 68.54% compared to benchmark schemes.
arXiv Detail & Related papers (2024-11-01T14:25:24Z) - Heterogeneity-Aware Resource Allocation and Topology Design for Hierarchical Federated Edge Learning [9.900317349372383]
Federated Learning (FL) provides a privacy-preserving framework for training machine learning models on mobile edge devices.
Traditional FL algorithms, e.g., FedAvg, impose a heavy communication workload on these devices.
We propose a two-tier HFEL system, where edge devices are connected to edge servers and edge servers are interconnected through peer-to-peer (P2P) edge backhauls.
Our goal is to enhance the training efficiency of the HFEL system through strategic resource allocation and topology design.
arXiv Detail & Related papers (2024-09-29T01:48:04Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
We propose a generative AI-empowered federated learning to address these challenges by leveraging the idea of FIlling the MIssing (FIMI) portion of local data.
Experiment results demonstrate that FIMI can save up to 50% of the device-side energy to achieve the target global test accuracy.
arXiv Detail & Related papers (2023-10-21T12:07:04Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
Federated edge learning (FEEL) enables privacy-preserving model training through periodic communication between edge devices and the server.
Unmanned Aerial Vehicle (UAV)mounted edge devices are particularly advantageous for FEEL due to their flexibility and mobility in efficient data collection.
arXiv Detail & Related papers (2023-06-05T16:01:33Z) - Muti-Agent Proximal Policy Optimization For Data Freshness in
UAV-assisted Networks [4.042622147977782]
We focus on the case where the collected data is time-sensitive, and it is critical to maintain its timeliness.
Our objective is to optimally design the UAVs' trajectories and the subsets of visited IoT devices such as the global Age-of-Updates (AoU) is minimized.
arXiv Detail & Related papers (2023-03-15T15:03:09Z) - A Distributed Deep Reinforcement Learning Technique for Application
Placement in Edge and Fog Computing Environments [31.326505188936746]
Several Deep Reinforcement Learning (DRL)-based placement techniques have been proposed in fog/edge computing environments.
We propose an actor-critic-based distributed application placement technique, working based on the IMPortance weighted Actor-Learner Architectures (IMPALA)
arXiv Detail & Related papers (2021-10-24T11:25:03Z) - Distributed CNN Inference on Resource-Constrained UAVs for Surveillance
Systems: Design and Optimization [43.9909417652678]
Unmanned Aerial Vehicles (UAVs) have attracted great interest in the last few years owing to their ability to cover large areas and access difficult and hazardous target zones.
Thanks to the advancements in computer vision and machine learning, UAVs are being adopted for a broad range of solutions and applications.
Deep Neural Networks (DNNs) are progressing toward deeper and complex models that prevent them from being executed on-board.
arXiv Detail & Related papers (2021-05-23T20:19:43Z) - Distributed Multi-agent Meta Learning for Trajectory Design in Wireless
Drone Networks [151.27147513363502]
This paper studies the problem of the trajectory design for a group of energyconstrained drones operating in dynamic wireless network environments.
A value based reinforcement learning (VDRL) solution and a metatraining mechanism is proposed.
arXiv Detail & Related papers (2020-12-06T01:30:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.