A Distributed Deep Reinforcement Learning Technique for Application
Placement in Edge and Fog Computing Environments
- URL: http://arxiv.org/abs/2110.12415v1
- Date: Sun, 24 Oct 2021 11:25:03 GMT
- Title: A Distributed Deep Reinforcement Learning Technique for Application
Placement in Edge and Fog Computing Environments
- Authors: Mohammad Goudarzi, Marimuthu Palaniswami, Rajkumar Buyya
- Abstract summary: Several Deep Reinforcement Learning (DRL)-based placement techniques have been proposed in fog/edge computing environments.
We propose an actor-critic-based distributed application placement technique, working based on the IMPortance weighted Actor-Learner Architectures (IMPALA)
- Score: 31.326505188936746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fog/Edge computing is a novel computing paradigm supporting
resource-constrained Internet of Things (IoT) devices by the placement of their
tasks on the edge and/or cloud servers. Recently, several Deep Reinforcement
Learning (DRL)-based placement techniques have been proposed in fog/edge
computing environments, which are only suitable for centralized setups. The
training of well-performed DRL agents requires manifold training data while
obtaining training data is costly. Hence, these centralized DRL-based
techniques lack generalizability and quick adaptability, thus failing to
efficiently tackle application placement problems. Moreover, many IoT
applications are modeled as Directed Acyclic Graphs (DAGs) with diverse
topologies. Satisfying dependencies of DAG-based IoT applications incur
additional constraints and increase the complexity of placement problems. To
overcome these challenges, we propose an actor-critic-based distributed
application placement technique, working based on the IMPortance weighted
Actor-Learner Architectures (IMPALA). IMPALA is known for efficient distributed
experience trajectory generation that significantly reduces the exploration
costs of agents. Besides, it uses an adaptive off-policy correction method for
faster convergence to optimal solutions. Our technique uses recurrent layers to
capture temporal behaviors of input data and a replay buffer to improve the
sample efficiency. The performance results, obtained from simulation and
testbed experiments, demonstrate that our technique significantly improves the
execution cost of IoT applications up to 30\% compared to its counterparts.
Related papers
- Advanced deep-reinforcement-learning methods for flow control: group-invariant and positional-encoding networks improve learning speed and quality [0.7421845364041001]
This study advances deep-reinforcement-learning (DRL) methods for flow control.
We focus on integrating group-invariant networks and positional encoding into DRL architectures.
The proposed methods are verified using a case study of Rayleigh-B'enard convection.
arXiv Detail & Related papers (2024-07-25T07:24:41Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Personalized Federated Deep Reinforcement Learning-based Trajectory
Optimization for Multi-UAV Assisted Edge Computing [22.09756306579992]
UAVs can serve as intelligent servers in edge computing environments, optimizing their flight trajectories to maximize communication system throughput.
Deep reinforcement learning (DRL)-based trajectory optimization algorithms may suffer from poor training performance due to intricate terrain features and inadequate training data.
This work proposes a novel solution, namely personalized federated deep reinforcement learning (PF-DRL), for multi-UAV trajectory optimization.
arXiv Detail & Related papers (2023-09-05T12:54:40Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - FIRE: A Failure-Adaptive Reinforcement Learning Framework for Edge Computing Migrations [52.85536740465277]
FIRE is a framework that adapts to rare events by training a RL policy in an edge computing digital twin environment.
We propose ImRE, an importance sampling-based Q-learning algorithm, which samples rare events proportionally to their impact on the value function.
We show that FIRE reduces costs compared to vanilla RL and the greedy baseline in the event of failures.
arXiv Detail & Related papers (2022-09-28T19:49:39Z) - A Transferable and Automatic Tuning of Deep Reinforcement Learning for
Cost Effective Phishing Detection [21.481974148873807]
Many challenging real-world problems require the deployment of ensembles multiple complementary learning models.
Deep Reinforcement Learning (DRL) offers a cost-effective alternative, where detectors are dynamically chosen based on the output of their predecessors.
arXiv Detail & Related papers (2022-09-19T14:09:07Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Differentially Private Federated Learning for Resource-Constrained
Internet of Things [24.58409432248375]
Federated learning is capable of analyzing the large amount of data from a distributed set of smart devices without requiring them to upload their data to a central place.
This paper proposes a novel federated learning framework called DP-PASGD for training a machine learning model efficiently from the data stored across resource-constrained smart devices in IoT.
arXiv Detail & Related papers (2020-03-28T04:32:54Z) - Stacked Auto Encoder Based Deep Reinforcement Learning for Online
Resource Scheduling in Large-Scale MEC Networks [44.40722828581203]
An online resource scheduling framework is proposed for minimizing the sum of weighted task latency for all the Internet of things (IoT) users.
A deep reinforcement learning (DRL) based solution is proposed, which includes the following components.
A preserved and prioritized experience replay (2p-ER) is introduced to assist the DRL to train the policy network and find the optimal offloading policy.
arXiv Detail & Related papers (2020-01-24T23:01:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.