SeisCLIP: A seismology foundation model pre-trained by multi-modal data
for multi-purpose seismic feature extraction
- URL: http://arxiv.org/abs/2309.02320v1
- Date: Tue, 5 Sep 2023 15:40:13 GMT
- Title: SeisCLIP: A seismology foundation model pre-trained by multi-modal data
for multi-purpose seismic feature extraction
- Authors: Xu Si, Xinming Wu, Hanlin Sheng, Jun Zhu, Zefeng Li
- Abstract summary: We develop SeisCLIP, a seismology foundation model trained through contrastive learning from multi-modal data.
It consists of a transformer encoder for extracting crucial features from time-frequency seismic spectrum and an foundational encoder for integrating the phase and source information of the same event.
Notably, SeisCLIP's performance surpasses that of baseline methods in event classification, localization, and focal mechanism analysis tasks.
- Score: 16.01738433164131
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training specific deep learning models for particular tasks is common across
various domains within seismology. However, this approach encounters two
limitations: inadequate labeled data for certain tasks and limited
generalization across regions. To address these challenges, we develop
SeisCLIP, a seismology foundation model trained through contrastive learning
from multi-modal data. It consists of a transformer encoder for extracting
crucial features from time-frequency seismic spectrum and an MLP encoder for
integrating the phase and source information of the same event. These encoders
are jointly pre-trained on a vast dataset and the spectrum encoder is
subsequently fine-tuned on smaller datasets for various downstream tasks.
Notably, SeisCLIP's performance surpasses that of baseline methods in event
classification, localization, and focal mechanism analysis tasks, employing
distinct datasets from different regions. In conclusion, SeisCLIP holds
significant potential as a foundational model in the field of seismology,
paving the way for innovative directions in foundation-model-based seismology
research.
Related papers
- Transforming Multidimensional Time Series into Interpretable Event Sequences for Advanced Data Mining [5.2863523790908955]
This paper introduces a novel proposed representation model designed to address the limitations of traditional methods in multidimensional time series (MTS) analysis.
The proposed framework has significant potential for applications across various fields, including services for monitoring and optimizing IT infrastructure, medical diagnosis through continuous patient monitoring, trend analysis, and internet businesses for tracking user behavior and forecasting.
arXiv Detail & Related papers (2024-09-22T06:27:07Z) - In the Search for Optimal Multi-view Learning Models for Crop Classification with Global Remote Sensing Data [5.143097874851516]
We use the CropHarvest dataset for validation, which provides optical, radar, weather time series, and topographic information as input data.
We suggest identifying the optimal encoder architecture tailored for a particular fusion strategy, and then determining the most suitable fusion strategy for the classification task.
arXiv Detail & Related papers (2024-03-25T09:49:42Z) - Finding Foundation Models for Time Series Classification with a PreText
Task [7.197233473373693]
This paper introduces pre-trained domain foundation models for Time Series Classification.
A key aspect of our methodology is a novel pretext task that spans multiple datasets.
Our experiments on the UCR archive demonstrate that this pre-training strategy significantly outperforms the conventional training approach without pre-training.
arXiv Detail & Related papers (2023-11-24T15:03:55Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Incremental Learning Meets Transfer Learning: Application to Multi-site
Prostate MRI Segmentation [16.50535949349874]
We propose a novel multi-site segmentation framework called incremental-transfer learning (ITL)
ITL learns a model from multi-site datasets in an end-to-end sequential fashion.
We show for the first time that leveraging our ITL training scheme is able to alleviate challenging catastrophic problems in incremental learning.
arXiv Detail & Related papers (2022-06-03T02:32:01Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
We propose a novel Consistency and Diversity induced human Motion (CDMS) algorithm.
Our model factorizes the source and target data into distinct multi-layer feature spaces.
A multi-mutual learning strategy is carried out to reduce the domain gap between the source and target data.
arXiv Detail & Related papers (2022-02-10T06:23:56Z) - CDEvalSumm: An Empirical Study of Cross-Dataset Evaluation for Neural
Summarization Systems [121.78477833009671]
We investigate the performance of different summarization models under a cross-dataset setting.
A comprehensive study of 11 representative summarization systems on 5 datasets from different domains reveals the effect of model architectures and generation ways.
arXiv Detail & Related papers (2020-10-11T02:19:15Z) - Siloed Federated Learning for Multi-Centric Histopathology Datasets [0.17842332554022694]
This paper proposes a novel federated learning approach for deep learning architectures in the medical domain.
Local-statistic batch normalization (BN) layers are introduced, resulting in collaboratively-trained, yet center-specific models.
We benchmark the proposed method on the classification of tumorous histopathology image patches extracted from the Camelyon16 and Camelyon17 datasets.
arXiv Detail & Related papers (2020-08-17T15:49:30Z) - Meta-learning framework with applications to zero-shot time-series
forecasting [82.61728230984099]
This work provides positive evidence using a broad meta-learning framework.
residual connections act as a meta-learning adaptation mechanism.
We show that it is viable to train a neural network on a source TS dataset and deploy it on a different target TS dataset without retraining.
arXiv Detail & Related papers (2020-02-07T16:39:43Z) - Seismic horizon detection with neural networks [62.997667081978825]
This paper is an open-sourced research of applying binary segmentation approach to the task of horizon detection on multiple real seismic cubes with a focus on inter-cube generalization of the predictive model.
The main contribution of this paper is an open-sourced research of applying binary segmentation approach to the task of horizon detection on multiple real seismic cubes with a focus on inter-cube generalization of the predictive model.
arXiv Detail & Related papers (2020-01-10T11:30:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.