Neural Network Solutions of Bosonic Quantum Systems in One Dimension
- URL: http://arxiv.org/abs/2309.02352v1
- Date: Tue, 5 Sep 2023 16:08:48 GMT
- Title: Neural Network Solutions of Bosonic Quantum Systems in One Dimension
- Authors: Paulo F. Bedaque, Hersh Kumar, Andy Sheng
- Abstract summary: We benchmark the methodology by using neural networks to study several different integrable bosonic quantum systems in one dimension.
While testing the scalability of the procedure to systems with many particles, we also introduce using symmetric function inputs to the neural network to enforce exchange symmetries of indistinguishable particles.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks have been proposed as efficient numerical wavefunction
ansatze which can be used to variationally search a wide range of functional
forms for ground state solutions. These neural network methods are also
advantageous in that more variational parameters and system degrees of freedom
can be easily added. We benchmark the methodology by using neural networks to
study several different integrable bosonic quantum systems in one dimension and
compare our results to the exact solutions. While testing the scalability of
the procedure to systems with many particles, we also introduce using symmetric
function inputs to the neural network to enforce exchange symmetries of
indistinguishable particles.
Related papers
- Chebyshev Spectral Neural Networks for Solving Partial Differential Equations [0.0]
The study uses a feedforward neural network model and error backpropagation principles, utilizing automatic differentiation (AD) to compute the loss function.
The numerical efficiency and accuracy of the CSNN model are investigated through testing on elliptic partial differential equations, and it is compared with the well-known Physics-Informed Neural Network(PINN) method.
arXiv Detail & Related papers (2024-06-06T05:31:45Z) - Neural Quantum States in Variational Monte Carlo Method: A Brief Summary [0.0]
variational Monte Carlo method based on neural quantum states for spin systems is reviewed.
neural networks can represent relatively complex wave functions with relatively small computational resources.
In quantum-state tomography, the representation method of neural quantum states has already achieved significant results.
arXiv Detail & Related papers (2024-06-03T05:55:55Z) - The Empirical Impact of Neural Parameter Symmetries, or Lack Thereof [50.49582712378289]
We investigate the impact of neural parameter symmetries by introducing new neural network architectures.
We develop two methods, with some provable guarantees, of modifying standard neural networks to reduce parameter space symmetries.
Our experiments reveal several interesting observations on the empirical impact of parameter symmetries.
arXiv Detail & Related papers (2024-05-30T16:32:31Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Deep Neural Networks as Variational Solutions for Correlated Open
Quantum Systems [0.0]
We show that parametrizing the density matrix directly with more powerful models can yield better variational ansatz functions.
We present results for the dissipative one-dimensional transverse-field Ising model and a two-dimensional dissipative Heisenberg model.
arXiv Detail & Related papers (2024-01-25T13:41:34Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
This work studies the design of neural networks that can process the weights or gradients of other neural networks.
We focus on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order.
In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks.
arXiv Detail & Related papers (2023-02-27T18:52:38Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Simple initialization and parametrization of sinusoidal networks via
their kernel bandwidth [92.25666446274188]
sinusoidal neural networks with activations have been proposed as an alternative to networks with traditional activation functions.
We first propose a simplified version of such sinusoidal neural networks, which allows both for easier practical implementation and simpler theoretical analysis.
We then analyze the behavior of these networks from the neural tangent kernel perspective and demonstrate that their kernel approximates a low-pass filter with an adjustable bandwidth.
arXiv Detail & Related papers (2022-11-26T07:41:48Z) - Variational learning of quantum ground states on spiking neuromorphic
hardware [0.0]
High-dimensional sampling spaces and transient autocorrelations confront neural networks with a challenging computational bottleneck.
Compared to conventional neural networks, physical-model devices offer a fast, efficient and inherently parallel substrate.
We demonstrate the ability of a neuromorphic chip to represent the ground states of quantum spin models by variational energy minimization.
arXiv Detail & Related papers (2021-09-30T14:39:45Z) - Sampling asymmetric open quantum systems for artificial neural networks [77.34726150561087]
We present a hybrid sampling strategy which takes asymmetric properties explicitly into account, achieving fast convergence times and high scalability for asymmetric open systems.
We highlight the universal applicability of artificial neural networks, underlining the universal applicability of neural networks.
arXiv Detail & Related papers (2020-12-20T18:25:29Z) - Random Sampling Neural Network for Quantum Many-Body Problems [0.0]
We propose a general numerical method, Random Sampling Neural Networks (RSNN), to utilize the pattern recognition technique for the random sampling matrix elements of an interacting many-body system via a self-supervised learning approach.
Several exactly solvable 1D models, including Ising model with transverse field, Fermi-Hubbard model, and spin-$1/2$ $XXZ$ model, are used to test the applicability of RSNN.
arXiv Detail & Related papers (2020-11-10T15:52:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.