論文の概要: Cognitive Architectures for Language Agents
- arxiv url: http://arxiv.org/abs/2309.02427v1
- Date: Tue, 5 Sep 2023 17:56:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 13:34:15.253904
- Title: Cognitive Architectures for Language Agents
- Title(参考訳): 言語エージェントのための認知アーキテクチャ
- Authors: Theodore Sumers, Shunyu Yao, Karthik Narasimhan, Thomas L. Griffiths
- Abstract要約: 大規模言語モデル (LLM) は実運用システムと同じ特性を持つことを示す。
本研究では,言語エージェントのための認知的アーキテクチャ (CoALA) を提案し,推論,基礎化,学習,意思決定の多様な手法を体系化する。
- 参考スコア(独自算出の注目度): 47.04753366946606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent efforts have incorporated large language models (LLMs) with external
resources (e.g., the Internet) or internal control flows (e.g., prompt
chaining) for tasks requiring grounding or reasoning. However, these efforts
have largely been piecemeal, lacking a systematic framework for constructing a
fully-fledged language agent. To address this challenge, we draw on the rich
history of agent design in symbolic artificial intelligence to develop a
blueprint for a new wave of cognitive language agents. We first show that LLMs
have many of the same properties as production systems, and recent efforts to
improve their grounding or reasoning mirror the development of cognitive
architectures built around production systems. We then propose Cognitive
Architectures for Language Agents (CoALA), a conceptual framework to
systematize diverse methods for LLM-based reasoning, grounding, learning, and
decision making as instantiations of language agents in the framework. Finally,
we use the CoALA framework to highlight gaps and propose actionable directions
toward more capable language agents in the future.
- Abstract(参考訳): 近年、大規模な言語モデル(llm)や外部リソース(インターネットなど)や内部制御フロー(例えば、プロンプトチェーン)が、接地や推論を必要とするタスクに組み込まれている。
しかし、これらの取り組みは主に断片的であり、完全な言語エージェントを構築するための体系的な枠組みが欠けている。
この課題に対処するために,我々は,シンボリック人工知能におけるエージェント設計の豊富な歴史を描き,新しい認知言語エージェントの波の青写真を作成する。
まず,LLMが生産システムと同等の性質を持つことを示すとともに,生産システムを中心に構築された認知アーキテクチャの発展を反映した基礎化や推論の改善に向けた最近の取り組みを示す。
次に,言語エージェントのための認知アーキテクチャ (CoALA) を提案する。このフレームワークでは,言語エージェントのインスタンス化として,LLMに基づく推論,基礎化,学習,意思決定の多様な手法を体系化する。
最後に、CoALAフレームワークを使用してギャップを強調し、将来より有能な言語エージェントに向けた実行可能な方向性を提案する。
関連論文リスト
- Symbolic Learning Enables Self-Evolving Agents [55.625275970720374]
エージェントシンボリックラーニング(エージェントシンボリックラーニング)(エージェントシンボリックラーニング)は、言語エージェントが自分自身で最適化できるための体系的なフレームワークである。
エージェント記号学習は、コネクショナリズム学習における2つの基本的なアルゴリズムを模倣することにより、言語エージェント内のシンボルネットワークを最適化するように設計されている。
我々は、標準ベンチマークと複雑な実世界のタスクの両方で概念実証実験を行う。
論文 参考訳(メタデータ) (2024-06-26T17:59:18Z) - KnowAgent: Knowledge-Augmented Planning for LLM-Based Agents [54.09074527006576]
大規模言語モデル(LLM)は複雑な推論タスクにおいて大きな可能性を証明していますが、より高度な課題に取り組むには不十分です。
この不適切さは、主に言語エージェントのアクション知識が組み込まれていないことに起因する。
我々は、明示的な行動知識を取り入れることで、LLMの計画能力を高めるために設計された新しいアプローチであるKnowAgentを紹介する。
論文 参考訳(メタデータ) (2024-03-05T16:39:12Z) - Exploring Large Language Model based Intelligent Agents: Definitions,
Methods, and Prospects [32.91556128291915]
本稿では, シングルエージェントおよびマルチエージェントシステムにおける知的エージェントの詳細な概要を提供するため, 現在の研究状況について調査する。
定義、研究フレームワーク、その構成、認知と計画方法、ツール利用、環境フィードバックに対する反応などの基礎的な構成要素を網羅する。
我々は、AIと自然言語処理の進化の展望を考慮し、LLMベースのエージェントの展望を思い浮かべて結論付ける。
論文 参考訳(メタデータ) (2024-01-07T09:08:24Z) - Agents: An Open-source Framework for Autonomous Language Agents [98.91085725608917]
我々は、言語エージェントを人工知能への有望な方向と見なしている。
Agentsはオープンソースライブラリで、これらの進歩を広く非専門的な聴衆に開放することを目的としています。
論文 参考訳(メタデータ) (2023-09-14T17:18:25Z) - Retroformer: Retrospective Large Language Agents with Policy Gradient Optimization [103.70896967077294]
本稿では,レトロスペクティブモデルを学習することで,大規模言語エージェントを強化するための原則的枠組みを提案する。
提案するエージェントアーキテクチャは,事前学習した言語モデルを微調整するために,複数の環境やタスクにまたがる報酬から学習する。
様々なタスクの実験結果から、言語エージェントは時間とともに改善することが示された。
論文 参考訳(メタデータ) (2023-08-04T06:14:23Z) - Simple Embodied Language Learning as a Byproduct of Meta-Reinforcement
Learning [56.07190845063208]
具体的強化学習(RL)エージェントは、非言語タスクから間接的に言語を学習できるか?
エージェントが特定のオフィスを見つけることを目標とするオフィスナビゲーション環境を設計し、異なる建物(タスク)でオフィスロケーションが異なる。
我々は、RLエージェントが言語を間接的に学習できることを発見した。現在のメタRLアルゴリズムで訓練されたエージェントは、ホールドアウトレイアウトと言語フレーズでフロアプランを読むことに成功している。
論文 参考訳(メタデータ) (2023-06-14T09:48:48Z) - Knowledge Engineering in the Long Game of Artificial Intelligence: The
Case of Speech Acts [0.6445605125467572]
本稿では,知識工学の原則と実践について述べる。
我々は,言語学,認知モデル,統計自然言語処理において広く追求されている課題である対話行動モデリングに注目した。
論文 参考訳(メタデータ) (2022-02-02T14:05:12Z) - Language Generation for Broad-Coverage, Explainable Cognitive Systems [0.0]
本稿では,OntoAgent認知アーキテクチャ内で開発された言語依存型知的エージェント(LEIA)の自然言語生成の最近の進歩について述べる。
同じ知識ベース、計算言語学の理論、エージェントアーキテクチャ、そして短期的アプリケーションをサポートしながら、時間とともに幅広いカバレッジ機能を開発する方法論を使っている。
論文 参考訳(メタデータ) (2022-01-25T16:09:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。