論文の概要: Enhancing Deep Learning Models through Tensorization: A Comprehensive
Survey and Framework
- arxiv url: http://arxiv.org/abs/2309.02428v3
- Date: Mon, 9 Oct 2023 11:14:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-13 04:10:38.349208
- Title: Enhancing Deep Learning Models through Tensorization: A Comprehensive
Survey and Framework
- Title(参考訳): テンソル化によるディープラーニングモデルの強化: 包括的調査とフレームワーク
- Authors: Manal Helal
- Abstract要約: 本稿では,多次元データソース,様々なマルチウェイ解析手法,およびこれらの手法の利点について考察する。
2次元アルゴリズムとPythonのマルチウェイアルゴリズムを比較したBlind Source separation(BSS)の小さな例を示す。
その結果,マルチウェイ解析の方が表現力が高いことが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The burgeoning growth of public domain data and the increasing complexity of
deep learning model architectures have underscored the need for more efficient
data representation and analysis techniques. This paper is motivated by the
work of (Helal, 2023) and aims to present a comprehensive overview of
tensorization. This transformative approach bridges the gap between the
inherently multidimensional nature of data and the simplified 2-dimensional
matrices commonly used in linear algebra-based machine learning algorithms.
This paper explores the steps involved in tensorization, multidimensional data
sources, various multiway analysis methods employed, and the benefits of these
approaches. A small example of Blind Source Separation (BSS) is presented
comparing 2-dimensional algorithms and a multiway algorithm in Python. Results
indicate that multiway analysis is more expressive. Contrary to the intuition
of the dimensionality curse, utilising multidimensional datasets in their
native form and applying multiway analysis methods grounded in multilinear
algebra reveal a profound capacity to capture intricate interrelationships
among various dimensions while, surprisingly, reducing the number of model
parameters and accelerating processing. A survey of the multi-away analysis
methods and integration with various Deep Neural Networks models is presented
using case studies in different application domains.
- Abstract(参考訳): パブリックドメインデータの急成長とディープラーニングモデルアーキテクチャの複雑さの増大は、より効率的なデータ表現と分析技術の必要性を浮き彫りにした。
この論文は(Helal, 2023)の成果に動機付けられ, テンソル化の包括的概要を示すことを目的としている。
この変換的アプローチは、データの本質的に多次元の性質と線形代数ベースの機械学習アルゴリズムで一般的に使用される単純化された2次元行列の間のギャップを埋める。
本稿では, テンソル化, 多次元データソース, 様々な多方向解析手法, およびこれらの手法の利点について考察する。
2次元アルゴリズムとPythonのマルチウェイアルゴリズムを比較したBlind Source separation(BSS)の小さな例を示す。
その結果,多方向解析の方が表現力が高いことがわかった。
次元の呪いの直感とは対照的に、多次元のデータセットを原形に利用し、多線型代数を基底とした多次元解析手法を適用すると、様々な次元の複雑な相互関係を捉える重要な能力が明らかとなり、驚くほど、モデルのパラメータの減少と処理の高速化が図られる。
異なるアプリケーション領域のケーススタディを用いて,多元的解析手法と様々な深層ニューラルネットワークモデルとの統合に関する調査を行った。
関連論文リスト
- You Only Scan Once: Efficient Multi-dimension Sequential Modeling with LightNet [47.48142221329556]
我々は,新しい再帰性に基づいて,LightNetと呼ばれる効率的な多次元逐次モデリングフレームワークを開発した。
MD-TPEとMD-LRPEという2つの新しい多次元線形相対的位置符号化手法を提案し,多次元シナリオにおける位置情報の識別能力を高める。
論文 参考訳(メタデータ) (2024-05-31T17:09:16Z) - Revealing Multimodal Contrastive Representation Learning through Latent
Partial Causal Models [85.67870425656368]
マルチモーダルデータに特化して設計された統一因果モデルを提案する。
マルチモーダル・コントラスト表現学習は潜在結合変数の同定に優れていることを示す。
実験では、仮定が破られたとしても、我々の発見の堅牢性を示す。
論文 参考訳(メタデータ) (2024-02-09T07:18:06Z) - MixUp-MIL: A Study on Linear & Multilinear Interpolation-Based Data
Augmentation for Whole Slide Image Classification [1.5810132476010594]
本稿では,デジタルスライド画像の分類のためのデータ拡張手法について検討する。
その結果,本手法の効果は極めて高い変動性を示した。
我々は暗黒に光をもたらすいくつかの興味深い側面を特定し、新しい研究分野を同定した。
論文 参考訳(メタデータ) (2023-11-06T12:00:53Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - Understanding High Dimensional Spaces through Visual Means Employing
Multidimensional Projections [0.0]
データ視覚化分野における関連する2つのアルゴリズムは、t分散近傍埋め込み(t-SNE)とLSP(Last-Square Projection)である。
これらのアルゴリズムは、データセットへの影響を含む、いくつかの数学的機能を理解するために使用することができる。
本稿では,多次元投影アルゴリズムの視覚的結果を用いて,それらの数学的枠組みのパラメータを理解・微調整する方法について述べる。
論文 参考訳(メタデータ) (2022-07-12T20:30:33Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
決定アルゴリズムは様々なアプリケーションで使われている。
数理モデルに頼らずにデータから調整された高度パラメトリックアーキテクチャを使用するディープラーニングアプローチが、ますます人気が高まっている。
モデルに基づく最適化とデータ中心のディープラーニングは、しばしば異なる規律とみなされる。
論文 参考訳(メタデータ) (2022-05-05T13:40:08Z) - Exploring Dimensionality Reduction Techniques in Multilingual
Transformers [64.78260098263489]
本稿では,多言語シームス変圧器の性能に及ぼす次元還元法の影響を包括的に考察する。
これは、それぞれ91.58% pm 2.59%$と54.65% pm 32.20%$の次元を平均で減少させることが可能であることを示している。
論文 参考訳(メタデータ) (2022-04-18T17:20:55Z) - Geometric Multimodal Deep Learning with Multi-Scaled Graph Wavelet
Convolutional Network [21.06669693699965]
マルチモーダルデータは、非常に異なる統計特性を持つ様々な領域のデータを統合することで、自然現象に関する情報を提供する。
マルチモーダルデータのモダリティ内およびモダリティ間情報の取得は,マルチモーダル学習法の基本的能力である。
非ユークリッド領域にディープラーニング手法を一般化することは、新たな研究分野である。
論文 参考訳(メタデータ) (2021-11-26T08:41:51Z) - Multimodal Data Fusion in High-Dimensional Heterogeneous Datasets via
Generative Models [16.436293069942312]
我々は、教師なしの方法で高次元異種データから確率的生成モデルを学習することに興味がある。
本稿では,指数関数的な分布系を通じて異なるデータ型を結合する一般的なフレームワークを提案する。
提案アルゴリズムは、実数値(ガウス)とカテゴリー(マルチノミカル)の特徴を持つ、よく遭遇する異種データセットについて詳細に述べる。
論文 参考訳(メタデータ) (2021-08-27T18:10:31Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
本稿では、表現類似度分析(RSA)の深部拡張であるDRSL(Deep Representational similarity Learning)を開発する。
DRSLは、多数の被験者を持つfMRIデータセットにおける様々な認知タスク間の類似性を分析するのに適している。
論文 参考訳(メタデータ) (2020-09-28T18:30:14Z) - Multi-Objective Genetic Programming for Manifold Learning: Balancing
Quality and Dimensionality [4.4181317696554325]
最先端の多様体学習アルゴリズムはこの変換の実行方法において不透明である。
多様体の品質と次元の競合する目的を自動的にバランスさせる多目的アプローチを導入する。
提案手法は,基礎および最先端の多様体学習手法と競合する。
論文 参考訳(メタデータ) (2020-01-05T23:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。