論文の概要: Evaluation Kidney Layer Segmentation on Whole Slide Imaging using
Convolutional Neural Networks and Transformers
- arxiv url: http://arxiv.org/abs/2309.02563v1
- Date: Tue, 5 Sep 2023 20:24:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 17:37:23.806565
- Title: Evaluation Kidney Layer Segmentation on Whole Slide Imaging using
Convolutional Neural Networks and Transformers
- Title(参考訳): 畳み込みニューラルネットワークとトランスフォーマーを用いた全身スライドイメージングにおける腎臓層分割の評価
- Authors: Muhao Liu, Chenyang Qi, Shunxing Bao, Quan Liu, Ruining Deng, Yu Wang,
Shilin Zhao, Haichun Yang, Yuankai Huo
- Abstract要約: 腎臓層構造のセグメンテーションは、腎病理における自動画像解析において重要な役割を担っている。
現在の手動セグメンテーションプロセスは、広範囲なデジタル病理画像を扱うために、労働集約的かつ実用的であることを証明している。
本研究では,代表畳み込みニューラルネットワーク(CNN)とトランスフォーマーセグメンテーションアプローチを用いる。
- 参考スコア(独自算出の注目度): 13.602882723160388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The segmentation of kidney layer structures, including cortex, outer stripe,
inner stripe, and inner medulla within human kidney whole slide images (WSI)
plays an essential role in automated image analysis in renal pathology.
However, the current manual segmentation process proves labor-intensive and
infeasible for handling the extensive digital pathology images encountered at a
large scale. In response, the realm of digital renal pathology has seen the
emergence of deep learning-based methodologies. However, very few, if any, deep
learning based approaches have been applied to kidney layer structure
segmentation. Addressing this gap, this paper assesses the feasibility of
performing deep learning based approaches on kidney layer structure
segmetnation. This study employs the representative convolutional neural
network (CNN) and Transformer segmentation approaches, including Swin-Unet,
Medical-Transformer, TransUNet, U-Net, PSPNet, and DeepLabv3+. We
quantitatively evaluated six prevalent deep learning models on renal cortex
layer segmentation using mice kidney WSIs. The empirical results stemming from
our approach exhibit compelling advancements, as evidenced by a decent Mean
Intersection over Union (mIoU) index. The results demonstrate that Transformer
models generally outperform CNN-based models. By enabling a quantitative
evaluation of renal cortical structures, deep learning approaches are promising
to empower these medical professionals to make more informed kidney layer
segmentation.
- Abstract(参考訳): ヒト腎全スライド画像(WSI)における大脳皮質,外側ストライプ,内ストライプ,内膜などの腎層構造の分画は,腎病理における自動画像解析において重要な役割を担っている。
しかし,現在の手作業による分節処理は,大規模に遭遇する広範囲なデジタル病理像の処理において,労働集約的かつ実現不可能であることが証明されている。
デジタル腎病理学の領域では、深層学習に基づく方法論が出現している。
しかし、深層学習に基づくアプローチが腎臓層構造区分に応用されている例はごくわずかである。
このギャップに対処するため, 本論文は, 腎臓層構造セグメトネーションに基づく深層学習の可能性を評価する。
本研究は、代表的な畳み込みニューラルネットワーク(cnn)とトランスフォーマリンセグメンテーションアプローチ(swin-unet, medical-transformer, transunet, u-net, pspnet, deeplabv3+)を用いる。
マウス腎wsisを用いた腎皮質層分節における6種類の深層学習モデルについて定量的に評価した。
MIoU(Mean Intersection over Union)指標が示すように,我々のアプローチから生じる経験的結果は,有意義な進歩を示している。
その結果,Transformerモデルの方がCNNモデルより優れていることがわかった。
腎皮質構造を定量的に評価することで、深層学習のアプローチは、これらの医療専門家により知的な腎層セグメンテーションを可能にすることを約束している。
関連論文リスト
- Multi-scale Multi-site Renal Microvascular Structures Segmentation for
Whole Slide Imaging in Renal Pathology [4.743463035587953]
Omni-Segは,マルチサイト,マルチスケールのトレーニングデータを活用する新しい動的ネットワーク手法である。
我々は、HuBMAPとNEPTUNEという2つのデータセットの画像を用いて、特異なディープネットワークを訓練する。
提案手法は,腎微小血管構造の定量的解析のための強力な計算ツールを腎病理医に提供する。
論文 参考訳(メタデータ) (2023-08-10T16:26:03Z) - A Hybrid Approach to Full-Scale Reconstruction of Renal Arterial Network [5.953404851562665]
腎血管ネットワークの主観的なモデルを構築するためのハイブリッドフレームワークを提案する。
我々は,大動脈の半自動分割と微小CTスキャンによる大脳皮質領域の推定を出発点として用いた。
ラット腎から得られた再建データと既存の解剖学的データとの統計的対応性を示した。
論文 参考訳(メタデータ) (2023-03-03T10:39:25Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Boundary-Aware Network for Kidney Parsing [18.75582522299797]
血管造影(CTA)スキャンで腎臓を分節する境界認識ネットワーク(BA-Net)を提案する。
モデルは共有エンコーダ、境界デコーダ、セグメンテーションデコーダを含む。
その結果,BA-Netの有効性が示された。
論文 参考訳(メタデータ) (2022-08-29T02:19:30Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
そこで我々は,アノテーション付きオルガンクラスから一般化されたオルガン概念を学習し,その概念を未知のクラスに転送するOrganNetを提案する。
そこで,OrganNetは臓器形態の幅広い変化に効果的に抵抗でき,一発分節タスクで最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-30T13:41:12Z) - Self-Supervised Learning for Segmentation [3.8026993716513933]
腎臓の解剖学的非対称性は、自己教師付き学習による腎臓分画の効果的なプロキシタスクを定義するために利用される。
siamese convolutional neural network (cnn)は、与えられた1対の腎臓切片をctボリュームから同一または異なる側面の腎臓に分類するために使用される。
論文 参考訳(メタデータ) (2021-01-14T04:28:47Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Multi-Scale Supervised 3D U-Net for Kidneys and Kidney Tumor
Segmentation [0.8397730500554047]
腎腫瘍と腎腫瘍をCT画像から自動的に分離するマルチスケール3D U-Net(MSS U-Net)を提案する。
我々のアーキテクチャは、3次元U-Netトレーニング効率を高めるために、深い監視と指数対数損失を組み合わせる。
このアーキテクチャは、KiTS19パブリックデータセットのデータを使用した最先端の作業と比較して、優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2020-04-17T08:25:43Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。