Evaluation Kidney Layer Segmentation on Whole Slide Imaging using
Convolutional Neural Networks and Transformers
- URL: http://arxiv.org/abs/2309.02563v1
- Date: Tue, 5 Sep 2023 20:24:27 GMT
- Title: Evaluation Kidney Layer Segmentation on Whole Slide Imaging using
Convolutional Neural Networks and Transformers
- Authors: Muhao Liu, Chenyang Qi, Shunxing Bao, Quan Liu, Ruining Deng, Yu Wang,
Shilin Zhao, Haichun Yang, Yuankai Huo
- Abstract summary: The segmentation of kidney layer structures plays an essential role in automated image analysis in renal pathology.
The current manual segmentation process proves labor-intensive and infeasible for handling the extensive digital pathology images.
This study employs the representative convolutional neural network (CNN) and Transformer segmentation approaches.
- Score: 13.602882723160388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The segmentation of kidney layer structures, including cortex, outer stripe,
inner stripe, and inner medulla within human kidney whole slide images (WSI)
plays an essential role in automated image analysis in renal pathology.
However, the current manual segmentation process proves labor-intensive and
infeasible for handling the extensive digital pathology images encountered at a
large scale. In response, the realm of digital renal pathology has seen the
emergence of deep learning-based methodologies. However, very few, if any, deep
learning based approaches have been applied to kidney layer structure
segmentation. Addressing this gap, this paper assesses the feasibility of
performing deep learning based approaches on kidney layer structure
segmetnation. This study employs the representative convolutional neural
network (CNN) and Transformer segmentation approaches, including Swin-Unet,
Medical-Transformer, TransUNet, U-Net, PSPNet, and DeepLabv3+. We
quantitatively evaluated six prevalent deep learning models on renal cortex
layer segmentation using mice kidney WSIs. The empirical results stemming from
our approach exhibit compelling advancements, as evidenced by a decent Mean
Intersection over Union (mIoU) index. The results demonstrate that Transformer
models generally outperform CNN-based models. By enabling a quantitative
evaluation of renal cortical structures, deep learning approaches are promising
to empower these medical professionals to make more informed kidney layer
segmentation.
Related papers
- Multi-scale Multi-site Renal Microvascular Structures Segmentation for
Whole Slide Imaging in Renal Pathology [4.743463035587953]
We present Omni-Seg, a novel single dynamic network method that capitalizes on multi-site, multi-scale training data.
We train a singular deep network using images from two datasets, HuBMAP and NEPTUNE.
Our proposed method provides renal pathologists with a powerful computational tool for the quantitative analysis of renal microvascular structures.
arXiv Detail & Related papers (2023-08-10T16:26:03Z) - A Hybrid Approach to Full-Scale Reconstruction of Renal Arterial Network [5.953404851562665]
We propose a hybrid framework to build subject-specific models of the renal vascular network.
We use semi-automated segmentation of large arteries and estimation of cortex area from a micro-CT scan as a starting point.
Our results show a statistical correspondence between the reconstructed data and existing anatomical data obtained from a rat kidney.
arXiv Detail & Related papers (2023-03-03T10:39:25Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Boundary-Aware Network for Kidney Parsing [18.75582522299797]
We propose a boundary-aware network (BA-Net) to segment kidneys on computed tomography angiography (CTA) scans.
The model contains a shared encoder, a boundary decoder, and a segmentation decoder.
The results demonstrate the effectiveness of the BA-Net.
arXiv Detail & Related papers (2022-08-29T02:19:30Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
We propose OrganNet which learns a generalized organ concept from a set of annotated organ classes and then transfer this concept to unseen classes.
We show that OrganNet can effectively resist the wide variations in organ morphology and produce state-of-the-art results in one-shot segmentation task.
arXiv Detail & Related papers (2021-03-30T13:41:12Z) - Self-Supervised Learning for Segmentation [3.8026993716513933]
The anatomical asymmetry of kidneys is leveraged to define an effective proxy task for kidney segmentation via self-supervised learning.
A siamese convolutional neural network (CNN) is used to classify a given pair of kidney sections from CT volumes as being kidneys of the same or different sides.
arXiv Detail & Related papers (2021-01-14T04:28:47Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Multi-Scale Supervised 3D U-Net for Kidneys and Kidney Tumor
Segmentation [0.8397730500554047]
We present a multi-scale supervised 3D U-Net, MSS U-Net, to automatically segment kidneys and kidney tumors from CT images.
Our architecture combines deep supervision with exponential logarithmic loss to increase the 3D U-Net training efficiency.
This architecture shows superior performance compared to state-of-the-art works using data from KiTS19 public dataset.
arXiv Detail & Related papers (2020-04-17T08:25:43Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.