論文の概要: Large Language Models for Automated Open-domain Scientific Hypotheses
Discovery
- arxiv url: http://arxiv.org/abs/2309.02726v1
- Date: Wed, 6 Sep 2023 05:19:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 16:45:39.985148
- Title: Large Language Models for Automated Open-domain Scientific Hypotheses
Discovery
- Title(参考訳): オープンドメイン科学仮説発見のための大規模言語モデル
- Authors: Zonglin Yang, Xinya Du, Junxian Li, Jie Zheng, Soujanya Poria, Erik
Cambria
- Abstract要約: 社会科学の学術的仮説発見のための最初のNLPデータセットを提案する。
この論文は、社会科学誌に最近掲載された50の論文から成っている。
論文で仮説を立案するのに必要な生のウェブコーパスもデータセットに収集される。
- 参考スコア(独自算出の注目度): 53.40975887946237
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Hypothetical induction is recognized as the main reasoning type when
scientists make observations about the world and try to propose hypotheses to
explain those observations. Past research on hypothetical induction has a
limited setting that (1) the observation annotations of the dataset are not raw
web corpus but are manually selected sentences (resulting in a close-domain
setting); and (2) the ground truth hypotheses annotations are mostly
commonsense knowledge, making the task less challenging. In this work, we
propose the first NLP dataset for social science academic hypotheses discovery,
consisting of 50 recent papers published in top social science journals. Raw
web corpora that are necessary for developing hypotheses in the published
papers are also collected in the dataset, with the final goal of creating a
system that automatically generates valid, novel, and helpful (to human
researchers) hypotheses, given only a pile of raw web corpora. The new dataset
can tackle the previous problems because it requires to (1) use raw web corpora
as observations; and (2) propose hypotheses even new to humanity. A
multi-module framework is developed for the task, as well as three different
feedback mechanisms that empirically show performance gain over the base
framework. Finally, our framework exhibits high performance in terms of both
GPT-4 based evaluation and social science expert evaluation.
- Abstract(参考訳): 仮説的帰納は、科学者が世界を観察し、それらの観察を説明する仮説を提案しようとするときに、主要な推論タイプとして認識される。
仮説誘導に関する過去の研究は、(1)データセットの観察アノテーションは生のウェブコーパスではなく、手作業で選択された文である(近接ドメイン設定で解釈する)こと、(2)基礎的真理仮説アノテーションは概ね常識的な知識であり、タスクの難易度を低くする、という制限がある。
本稿では,社会科学誌上で発表された50の論文からなる,社会科学学術的仮説発見のための最初のnlpデータセットを提案する。
論文で仮説を策定するのに必要となる生のウェブコーパスもデータセットに収集され、有効な(人間研究者にとって)仮説を自動生成するシステムを構築するという最終目標は、生のウェブコーパスの山だけに限られる。
新たなデータセットは,(1)生のウェブコーパスを観察に利用する必要があり,(2)人間性にはさらに新しい仮説を提案するため,従来の課題に対処することができる。
タスク用にマルチモジュールフレームワークが開発され、ベースフレームワークのパフォーマンス向上を実証的に示す3つのフィードバックメカニズムが開発されている。
最後に,GPT-4に基づく評価と社会科学の専門家による評価の両面で高い性能を示す。
関連論文リスト
- Improving Scientific Hypothesis Generation with Knowledge Grounded Large Language Models [20.648157071328807]
大規模言語モデル(LLM)は、既存の知識を分析することによって、新しい研究の方向性を特定することができる。
LLMは幻覚を発生させる傾向がある。
我々は,知識グラフから外部構造的知識を統合することで,LLM仮説の生成を促進するシステムKG-CoIを提案する。
論文 参考訳(メタデータ) (2024-11-04T18:50:00Z) - Graph Stochastic Neural Process for Inductive Few-shot Knowledge Graph Completion [63.68647582680998]
I-FKGC(inductive few-shot knowledge graph completion)と呼ばれる課題に焦点をあてる。
帰納的推論(inductive reasoning)の概念に着想を得て,I-FKGCを帰納的推論問題とした。
本稿では,仮説の連成分布をモデル化したニューラルプロセスに基づく仮説抽出器を提案する。
第2のモジュールでは、この仮説に基づいて、クエリセットのトリプルが抽出された仮説と一致するかどうかをテストするグラフアテンションベースの予測器を提案する。
論文 参考訳(メタデータ) (2024-08-03T13:37:40Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
本稿では,大規模言語モデルの知識駆動型抽象推論能力をシミュレーションの計算力で強化することを提案する。
本稿では,2段階最適化フレームワークであるSGA(Scientific Generative Agent)を紹介する。
法発見と分子設計における枠組みの有効性を実証するための実験を行った。
論文 参考訳(メタデータ) (2024-05-16T03:04:10Z) - Hypothesis Generation with Large Language Models [28.73562677221476]
データに基づく仮説生成(ラベル付き例)に焦点を当てる。
マルチアームの盗賊にインスパイアされた我々は、更新プロセスにおけるエクスプロイト探索のトレードオフを通知する報酬関数を設計する。
我々のアルゴリズムは、分類タスクにおいて、数発のプロンプトよりもずっと優れた予測性能を実現する仮説を生成することができる。
論文 参考訳(メタデータ) (2024-04-05T18:00:07Z) - Large Language Models are Zero Shot Hypothesis Proposers [17.612235393984744]
大規模言語モデル(LLM)は、情報障壁を断ち切ることを約束する、グローバルかつ学際的な知識の豊富なものである。
バイオメディカル文献から背景知識と仮説ペアからなるデータセットを構築した。
ゼロショット, 少数ショット, 微調整設定において, 最上位モデルの仮説生成能力を評価する。
論文 参考訳(メタデータ) (2023-11-10T10:03:49Z) - Can Large Language Models Discern Evidence for Scientific Hypotheses? Case Studies in the Social Sciences [3.9985385067438344]
強い仮説は、既存の証拠に基づく最良の推理であり、関連する文献の包括的な見解によって知らされる。
毎年発行される科学論文の数が指数関数的に増加すると、ある仮説に関連する証拠の手作業による集約と合成は困難である。
我々は,社会科学における研究のコミュニティ主導のアノテーションを用いた科学的仮説の課題のための新しいデータセットを共有する。
論文 参考訳(メタデータ) (2023-09-07T04:15:17Z) - SciMON: Scientific Inspiration Machines Optimized for Novelty [68.46036589035539]
文献に基づく新たな科学的方向を生成するために,ニューラルランゲージモデルを探索し,拡張する。
モデルが入力背景コンテキストとして使用される新しい設定で、劇的な出発をとっています。
本稿では,過去の科学的論文から「吸入」を抽出するモデリングフレームワークであるSciMONを紹介する。
論文 参考訳(メタデータ) (2023-05-23T17:12:08Z) - The role of prior information and computational power in Machine
Learning [0.0]
本稿では,事前情報と計算能力を用いて学習問題を解決する方法について論じる。
我々は高い計算能力を利用することは高い性能の利点があると主張している。
論文 参考訳(メタデータ) (2022-10-31T20:39:53Z) - SciFact-Open: Towards open-domain scientific claim verification [61.288725621156864]
本稿では,科学的クレーム検証システムの性能評価を目的とした新しいテストコレクションであるSciFact-Openを提案する。
我々は、4つの最先端の科学的クレーム検証モデルの上位予測をプールし、注釈付けすることで、科学的クレームの証拠を収集する。
その結果,SciFact-Openへの一般化に苦慮する小形コーパス上で開発されたシステムは,少なくとも15F1の性能低下を示すことがわかった。
論文 参考訳(メタデータ) (2022-10-25T05:45:00Z) - L2R2: Leveraging Ranking for Abductive Reasoning [65.40375542988416]
学習システムの帰納的推論能力を評価するために,帰納的自然言語推論タスク(alpha$NLI)を提案する。
新たな$L2R2$アプローチは、Learning-to-rankフレームワークの下で提案されている。
ARTデータセットの実験は、公開リーダボードの最先端に到達します。
論文 参考訳(メタデータ) (2020-05-22T15:01:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。