論文の概要: Improving Scientific Hypothesis Generation with Knowledge Grounded Large Language Models
- arxiv url: http://arxiv.org/abs/2411.02382v1
- Date: Mon, 04 Nov 2024 18:50:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:44:38.278530
- Title: Improving Scientific Hypothesis Generation with Knowledge Grounded Large Language Models
- Title(参考訳): 知識基盤大言語モデルによる科学的仮説生成の改善
- Authors: Guangzhi Xiong, Eric Xie, Amir Hassan Shariatmadari, Sikun Guo, Stefan Bekiranov, Aidong Zhang,
- Abstract要約: 大規模言語モデル(LLM)は、既存の知識を分析することによって、新しい研究の方向性を特定することができる。
LLMは幻覚を発生させる傾向がある。
我々は,知識グラフから外部構造的知識を統合することで,LLM仮説の生成を促進するシステムKG-CoIを提案する。
- 参考スコア(独自算出の注目度): 20.648157071328807
- License:
- Abstract: Large language models (LLMs) have demonstrated remarkable capabilities in various scientific domains, from natural language processing to complex problem-solving tasks. Their ability to understand and generate human-like text has opened up new possibilities for advancing scientific research, enabling tasks such as data analysis, literature review, and even experimental design. One of the most promising applications of LLMs in this context is hypothesis generation, where they can identify novel research directions by analyzing existing knowledge. However, despite their potential, LLMs are prone to generating ``hallucinations'', outputs that are plausible-sounding but factually incorrect. Such a problem presents significant challenges in scientific fields that demand rigorous accuracy and verifiability, potentially leading to erroneous or misleading conclusions. To overcome these challenges, we propose KG-CoI (Knowledge Grounded Chain of Ideas), a novel system that enhances LLM hypothesis generation by integrating external, structured knowledge from knowledge graphs (KGs). KG-CoI guides LLMs through a structured reasoning process, organizing their output as a chain of ideas (CoI), and includes a KG-supported module for the detection of hallucinations. With experiments on our newly constructed hypothesis generation dataset, we demonstrate that KG-CoI not only improves the accuracy of LLM-generated hypotheses but also reduces the hallucination in their reasoning chains, highlighting its effectiveness in advancing real-world scientific research.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自然言語処理から複雑な問題解決タスクに至るまで、様々な科学分野において顕著な能力を示している。
人間のようなテキストを理解して生成する能力は、データ分析、文献レビュー、さらには実験的な設計といったタスクを可能にする科学研究を前進させる新たな可能性を開く。
この文脈におけるLSMの最も有望な応用の1つは仮説生成であり、既存の知識を分析して新しい研究の方向性を特定することができる。
しかし、その可能性にもかかわらず、LLMは「幻覚」を生成する傾向にある。
このような問題は、厳密な正確さと検証性を必要とする科学分野において重大な課題を示し、誤った結論や誤解を招く可能性がある。
これらの課題を克服するために,知識グラフ(KGs)から外部構造知識を統合することにより,LLM仮説の生成を促進する新しいシステムであるKG-CoI(Knowledge Grounded Chain of Ideas)を提案する。
KG-CoIは、構造的推論プロセスを通じてLPMを誘導し、その出力をアイデアの連鎖(CoI)として組織し、幻覚を検出するためのKG支援モジュールを含む。
新たに構築した仮説生成データセットの実験により、KG-CoIはLCM生成仮説の精度を向上するだけでなく、推論連鎖における幻覚を低減し、実世界の科学的研究の進展におけるその効果を明らかにする。
関連論文リスト
- GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを統合する新しい推論フレームワークである。
本手法は,ゴールド回答検索ではなく,専門家の問題解決に類似した論理的・段階的推論手法を提案する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
本稿では,大規模言語モデルの知識駆動型抽象推論能力をシミュレーションの計算力で強化することを提案する。
本稿では,2段階最適化フレームワークであるSGA(Scientific Generative Agent)を紹介する。
法発見と分子設計における枠組みの有効性を実証するための実験を行った。
論文 参考訳(メタデータ) (2024-05-16T03:04:10Z) - Scientific Large Language Models: A Survey on Biological & Chemical Domains [47.97810890521825]
大規模言語モデル(LLM)は、自然言語理解の強化において、変革的な力として現れてきた。
LLMの応用は従来の言語境界を超えて、様々な科学分野で開発された専門的な言語システムを含んでいる。
AI for Science(AI for Science)のコミュニティで急成長している分野として、科学LLMは包括的な探査を義務付けている。
論文 参考訳(メタデータ) (2024-01-26T05:33:34Z) - SciGLM: Training Scientific Language Models with Self-Reflective
Instruction Annotation and Tuning [60.14510984576027]
SciGLMは、大学レベルの科学的推論を行うことができる科学言語モデルのスイートである。
本研究では, 自己回帰的指示アノテーションの枠組みを適用し, 難解な科学的問題に対する段階的推論を生成する。
言語モデルのChatGLMをSciInstructで微調整し、科学的および数学的推論能力を向上した。
論文 参考訳(メタデータ) (2024-01-15T20:22:21Z) - Context Matters: Data-Efficient Augmentation of Large Language Models
for Scientific Applications [15.893290942177112]
GPT-4のような大規模言語モデル(LLM)に固有の課題について検討する。
一貫性と意味論的に厳密な方法で誤った回答を提示するLLMの能力は、事実の不正確さの検出を複雑にする。
本研究の目的は,このような誤りの理解と軽減を図り,LCMの精度と信頼性の向上に寄与することである。
論文 参考訳(メタデータ) (2023-12-12T08:43:20Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
本稿では,知識グラフに基づくリトロフィッティング(KGR)を提案する。
実験により,実QAベンチマークにおいて,KGRはLLMの性能を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2023-11-22T11:08:38Z) - Large Language Models are Zero Shot Hypothesis Proposers [17.612235393984744]
大規模言語モデル(LLM)は、情報障壁を断ち切ることを約束する、グローバルかつ学際的な知識の豊富なものである。
バイオメディカル文献から背景知識と仮説ペアからなるデータセットを構築した。
ゼロショット, 少数ショット, 微調整設定において, 最上位モデルの仮説生成能力を評価する。
論文 参考訳(メタデータ) (2023-11-10T10:03:49Z) - An Interdisciplinary Outlook on Large Language Models for Scientific
Research [3.4108358650013573]
本稿では,異なる学問分野におけるLarge Language Models(LLM)の機能と制約について述べる。
本稿では, LLM が学術調査の強化を図り, 大量の出版物を要約することで, 文献レビューの促進などの具体的な事例を提示する。
LLMが直面する課題には、広範囲で偏見のあるデータセットへの依存や、それらの使用から生じる潜在的な倫理的ジレンマが含まれる。
論文 参考訳(メタデータ) (2023-11-03T19:41:09Z) - Large Language Models for Automated Open-domain Scientific Hypotheses Discovery [50.40483334131271]
本研究は,社会科学の学術的仮説発見のための最初のデータセットを提案する。
従来のデータセットとは異なり、新しいデータセットには、(1)オープンドメインデータ(RAW Webコーパス)を観察として使用すること、(2)人間性にさらに新しい仮説を提案することが必要である。
パフォーマンス向上のための3つのフィードバック機構を含む,タスクのためのマルチモジュールフレームワークが開発されている。
論文 参考訳(メタデータ) (2023-09-06T05:19:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。