論文の概要: MLN-net: A multi-source medical image segmentation method for clustered
microcalcifications using multiple layer normalization
- arxiv url: http://arxiv.org/abs/2309.02742v1
- Date: Wed, 6 Sep 2023 05:56:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 16:34:48.126675
- Title: MLN-net: A multi-source medical image segmentation method for clustered
microcalcifications using multiple layer normalization
- Title(参考訳): mln-net : 多層正規化を用いたマルチソース医用マイクロ石灰化画像分割法
- Authors: Ke Wang, Zanting Ye, Xiang Xie, Haidong Cui, Tao Chen, Banteng Liu
- Abstract要約: 本稿では,MLN-netという新しいフレームワークを提案する。
本稿では,異なる領域のクラスタ化マイクロ石灰化セグメンテーションにおけるMLN-netの有効性を検証した。
- 参考スコア(独自算出の注目度): 8.969596531778121
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate segmentation of clustered microcalcifications in mammography is
crucial for the diagnosis and treatment of breast cancer. Despite exhibiting
expert-level accuracy, recent deep learning advancements in medical image
segmentation provide insufficient contribution to practical applications, due
to the domain shift resulting from differences in patient postures, individual
gland density, and imaging modalities of mammography etc. In this paper, a
novel framework named MLN-net, which can accurately segment multi-source images
using only single source images, is proposed for clustered microcalcification
segmentation. We first propose a source domain image augmentation method to
generate multi-source images, leading to improved generalization. And a
structure of multiple layer normalization (LN) layers is used to construct the
segmentation network, which can be found efficient for clustered
microcalcification segmentation in different domains. Additionally, a branch
selection strategy is designed for measuring the similarity of the source
domain data and the target domain data. To validate the proposed MLN-net,
extensive analyses including ablation experiments are performed, comparison of
12 baseline methods. Extensive experiments validate the effectiveness of
MLN-net in segmenting clustered microcalcifications from different domains and
the its segmentation accuracy surpasses state-of-the-art methods. Code will be
available at https://github.com/yezanting/MLN-NET-VERSON1.
- Abstract(参考訳): 乳がんの診断と治療には,マンモグラフィーにおけるクラスタ化微小石灰化の正確なセグメンテーションが不可欠である。
専門家レベルの精度を示すにもかかわらず、最近の医学画像分割におけるディープラーニングの進歩は、患者の姿勢や個々の腺密度、マンモグラフィのイメージングモダリティなどの違いによるドメインシフトによって、実用的な応用に不十分な貢献を与えている。
本稿では,マルチソースイメージを単一ソース画像のみを用いて高精度にセグメント化できるmln-netという新しいフレームワークを提案する。
本稿ではまず,マルチソース画像を生成するためのソース領域画像拡張手法を提案する。
また、複数の層正規化(ln)層の構造を用いてセグメンテーションネットワークを構築し、異なる領域のクラスタ化マイクロ石灰化セグメンテーションに効率的であることが分かる。
さらに、ソースドメインデータとターゲットドメインデータの類似度を測定するために、分岐選択戦略が設計されている。
提案するMLN-netを検証するため, アブレーション実験を含む広範囲な解析を行い, 12塩基法との比較を行った。
広範囲な実験により、異なる領域からのクラスタ化マイクロ石灰化のセグメンテーションにおけるMLN-netの有効性が検証され、そのセグメンテーション精度は最先端の手法を超えている。
コードはhttps://github.com/yezanting/MLN-NET-VERSON1.comから入手できる。
関連論文リスト
- MM-UNet: A Mixed MLP Architecture for Improved Ophthalmic Image Segmentation [3.2846676620336632]
眼科画像分割は眼疾患の診断において重要な基礎となる。
トランスフォーマーベースのモデルはこれらの制限に対処するが、かなりの計算オーバーヘッドをもたらす。
本稿では,眼内画像分割に適したMixedモデルであるMM-UNetを紹介する。
論文 参考訳(メタデータ) (2024-08-16T08:34:50Z) - Interpretable Small Training Set Image Segmentation Network Originated
from Multi-Grid Variational Model [5.283735137946097]
深層学習法 (DL) が提案され, 画像分割に広く利用されている。
DLメソッドは通常、トレーニングデータとして大量の手動セグメントデータを必要とし、解釈性に乏しい。
本稿では,MSモデルにおける手作り正則項をデータ適応型一般化可学習正則項に置き換える。
論文 参考訳(メタデータ) (2023-06-25T02:34:34Z) - M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
医用画像から多様なセグメンテーションを仕上げるマルチスケールサブトラクションネットワーク(M$2$SNet)を提案する。
本手法は,4つの異なる医用画像セグメンテーションタスクの11つのデータセットに対して,異なる評価基準の下で,ほとんどの最先端手法に対して好意的に機能する。
論文 参考訳(メタデータ) (2023-03-20T06:26:49Z) - MSCDA: Multi-level Semantic-guided Contrast Improves Unsupervised Domain
Adaptation for Breast MRI Segmentation in Small Datasets [5.272836235045653]
マルチレベルセマンティック・ガイド・コントラスト・ドメイン・アダプティブ・フレームワークを提案する。
我々のアプローチは、ドメイン間の特徴表現を整合させるために、対照的な学習を伴う自己学習を取り入れている。
特に,ピクセル・ツー・ピクセル,ピクセル・ツー・セントロイド,セントロイド・ツー・セントロイドのコントラストを取り入れることで,コントラストの損失を増大させる。
論文 参考訳(メタデータ) (2023-01-04T19:16:55Z) - A Unified Framework for Generalized Low-Shot Medical Image Segmentation
with Scarce Data [24.12765716392381]
距離距離距離距離学習(DML)に基づく医用画像分割の一般化のための統一的枠組みを提案する。
DMLでは,各カテゴリの多モード混合表現を学習し,画素の深層埋め込みとカテゴリ表現との間の余弦距離に基づいて密接な予測を行う。
脳MRIおよび腹部CTデータセットの実験において,提案手法は標準DNN(3D U-Net)法と古典的登録(ANT)法に対して,低ショットセグメンテーションにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-10-18T13:01:06Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
本稿では,患者スキャンに欠落するサブモダリティを1つ以上のインプットするために,MGP-VAE(Multi-modal Gaussian Process Prior Variational Autoencoder)を提案する。
MGP-VAEは、変分オートエンコーダ(VAE)に先立ってガウス過程(GP)を利用して、被験者/患者およびサブモダリティ相関を利用することができる。
4つのサブモダリティのうち2つ、または3つが欠落している脳腫瘍に対するMGP-VAEの適用性を示す。
論文 参考訳(メタデータ) (2021-07-07T19:06:34Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention
and Dynamic Resampling [13.542898009730804]
関連するアルゴリズムの性能は、マルチモーダル情報の適切な融合によって大きく影響を受ける。
We present the Max-Fusion U-Net that achieve a improve pathology segmentation performance。
マルチシーケンスCMRデータセットを併用したMyoPS(Myocardial pathology segmentation)を用いて,本手法の評価を行った。
論文 参考訳(メタデータ) (2020-09-05T17:24:23Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
本稿では,ロバスト表現を学習し,前立腺のセグメンテーションを改善するための新しいマルチサイトネットワーク(MS-Net)を提案する。
当社のMS-Netは,すべてのデータセットのパフォーマンスを一貫して改善し,マルチサイト学習における最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-02-09T14:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。