論文の概要: MM-UNet: A Mixed MLP Architecture for Improved Ophthalmic Image Segmentation
- arxiv url: http://arxiv.org/abs/2408.08600v1
- Date: Fri, 16 Aug 2024 08:34:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 16:07:32.445620
- Title: MM-UNet: A Mixed MLP Architecture for Improved Ophthalmic Image Segmentation
- Title(参考訳): MM-UNet:眼科画像分割改善のための混合MLPアーキテクチャ
- Authors: Zunjie Xiao, Xiaoqing Zhang, Risa Higashita, Jiang Liu,
- Abstract要約: 眼科画像分割は眼疾患の診断において重要な基礎となる。
トランスフォーマーベースのモデルはこれらの制限に対処するが、かなりの計算オーバーヘッドをもたらす。
本稿では,眼内画像分割に適したMixedモデルであるMM-UNetを紹介する。
- 参考スコア(独自算出の注目度): 3.2846676620336632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ophthalmic image segmentation serves as a critical foundation for ocular disease diagnosis. Although fully convolutional neural networks (CNNs) are commonly employed for segmentation, they are constrained by inductive biases and face challenges in establishing long-range dependencies. Transformer-based models address these limitations but introduce substantial computational overhead. Recently, a simple yet efficient Multilayer Perceptron (MLP) architecture was proposed for image classification, achieving competitive performance relative to advanced transformers. However, its effectiveness for ophthalmic image segmentation remains unexplored. In this paper, we introduce MM-UNet, an efficient Mixed MLP model tailored for ophthalmic image segmentation. Within MM-UNet, we propose a multi-scale MLP (MMLP) module that facilitates the interaction of features at various depths through a grouping strategy, enabling simultaneous capture of global and local information. We conducted extensive experiments on both a private anterior segment optical coherence tomography (AS-OCT) image dataset and a public fundus image dataset. The results demonstrated the superiority of our MM-UNet model in comparison to state-of-the-art deep segmentation networks.
- Abstract(参考訳): 眼科画像分割は眼疾患の診断において重要な基礎となる。
完全畳み込みニューラルネットワーク(CNN)は一般的にセグメンテーションに使用されるが、帰納的バイアスと長距離依存を確立する上での課題によって制約される。
トランスフォーマーベースのモデルはこれらの制限に対処するが、かなりの計算オーバーヘッドをもたらす。
近年,画像分類のためのシンプルな多層パーセプトロン(MLP)アーキテクチャが提案されている。
しかし,眼内画像分割の有効性はいまだ不明である。
本稿では,眼画像分割に適したMLPモデルMM-UNetを提案する。
MM-UNet内では,グループ化戦略によって様々な深度における特徴の相互作用を容易にし,グローバルおよびローカル情報の同時取得を可能にするマルチスケールMLP (MMLP) モジュールを提案する。
我々は,AS-OCT画像データセットとパブリックファンドス画像データセットの両方について,広範囲にわたる実験を行った。
その結果,最先端のディープセグメンテーションネットワークと比較してMM-UNetモデルの方が優れていることが示された。
関連論文リスト
- ShapeMamba-EM: Fine-Tuning Foundation Model with Local Shape Descriptors and Mamba Blocks for 3D EM Image Segmentation [49.42525661521625]
本稿では3次元EMセグメンテーションのための特殊微調整法であるShapeMamba-EMを提案する。
5つのセグメンテーションタスクと10のデータセットをカバーする、幅広いEMイメージでテストされている。
論文 参考訳(メタデータ) (2024-08-26T08:59:22Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
マスク画像モデル(MIM)は,マスク画像から元の情報を復元する簡便さと有効性から広く利用されている。
本稿では、強化学習(RL)を利用して最適な画像マスキング比とマスキング戦略を自動検索する決定に基づくMIMを提案する。
本手法は,ニューロン分節の課題において,代替自己監督法に対して有意な優位性を有する。
論文 参考訳(メタデータ) (2023-10-06T10:40:46Z) - MLN-net: A multi-source medical image segmentation method for clustered
microcalcifications using multiple layer normalization [8.969596531778121]
本稿では,MLN-netという新しいフレームワークを提案する。
本稿では,異なる領域のクラスタ化マイクロ石灰化セグメンテーションにおけるMLN-netの有効性を検証した。
論文 参考訳(メタデータ) (2023-09-06T05:56:30Z) - Gene-induced Multimodal Pre-training for Image-omic Classification [20.465959546613554]
本稿では、ゲノム情報と全スライド画像(WSI)を併用した遺伝子誘導型マルチモーダル事前学習フレームワークを提案する。
TCGAデータセットによる実験結果から,ネットワークアーキテクチャと事前学習フレームワークの優位性が示され,画像-オミクス分類の精度は99.47%に達した。
論文 参考訳(メタデータ) (2023-09-06T04:30:15Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
本稿では,スライド病理像全体に対する共有コンテキスト処理の新たな概念を提案する。
AMIGOは、組織内のセルラーグラフを使用して、患者に単一の表現を提供する。
我々のモデルは、データの20%以下で同じ性能を達成できる程度に、欠落した情報に対して強い堅牢性を示す。
論文 参考訳(メタデータ) (2023-03-01T23:37:45Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Site Generalization: Stroke Lesion Segmentation on Magnetic Resonance
Images from Unseen Sites [40.32385363670918]
ストロークは様々な脳血管疾患の主要な原因である。
この課題に対して深層学習に基づくモデルが提案されているが、これらのモデルを見えない場所に一般化することは困難である。
SG-Netと呼ばれるU-netベースのセグメンテーションネットワークを提案する。
論文 参考訳(メタデータ) (2022-05-09T14:33:06Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
本稿では,患者スキャンに欠落するサブモダリティを1つ以上のインプットするために,MGP-VAE(Multi-modal Gaussian Process Prior Variational Autoencoder)を提案する。
MGP-VAEは、変分オートエンコーダ(VAE)に先立ってガウス過程(GP)を利用して、被験者/患者およびサブモダリティ相関を利用することができる。
4つのサブモダリティのうち2つ、または3つが欠落している脳腫瘍に対するMGP-VAEの適用性を示す。
論文 参考訳(メタデータ) (2021-07-07T19:06:34Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention
and Dynamic Resampling [13.542898009730804]
関連するアルゴリズムの性能は、マルチモーダル情報の適切な融合によって大きく影響を受ける。
We present the Max-Fusion U-Net that achieve a improve pathology segmentation performance。
マルチシーケンスCMRデータセットを併用したMyoPS(Myocardial pathology segmentation)を用いて,本手法の評価を行った。
論文 参考訳(メタデータ) (2020-09-05T17:24:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。