論文の概要: SWAP: Exploiting Second-Ranked Logits for Adversarial Attacks on Time
Series
- arxiv url: http://arxiv.org/abs/2309.02752v1
- Date: Wed, 6 Sep 2023 06:17:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 16:35:04.036039
- Title: SWAP: Exploiting Second-Ranked Logits for Adversarial Attacks on Time
Series
- Title(参考訳): SWAP: 時系列で敵攻撃の第二線ログを爆発させる
- Authors: Chang George Dong, Liangwei Nathan Zheng, Weitong Chen, Wei Emma
Zhang, Lin Yue
- Abstract要約: 時系列分類(TSC)は、様々な領域において重要な課題となっている。
ディープニューラルモデルは、TSCタスクにおいて優れたパフォーマンスを示している。
TSCモデルは敵攻撃に対して脆弱である。
TSCモデルの新たな攻撃手法であるSWAPを提案する。
- 参考スコア(独自算出の注目度): 11.356275885051442
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series classification (TSC) has emerged as a critical task in various
domains, and deep neural models have shown superior performance in TSC tasks.
However, these models are vulnerable to adversarial attacks, where subtle
perturbations can significantly impact the prediction results. Existing
adversarial methods often suffer from over-parameterization or random logit
perturbation, hindering their effectiveness. Additionally, increasing the
attack success rate (ASR) typically involves generating more noise, making the
attack more easily detectable. To address these limitations, we propose SWAP, a
novel attacking method for TSC models. SWAP focuses on enhancing the confidence
of the second-ranked logits while minimizing the manipulation of other logits.
This is achieved by minimizing the Kullback-Leibler divergence between the
target logit distribution and the predictive logit distribution. Experimental
results demonstrate that SWAP achieves state-of-the-art performance, with an
ASR exceeding 50% and an 18% increase compared to existing methods.
- Abstract(参考訳): 時系列分類(tsc)は様々な領域において重要なタスクとして出現し、深層神経モデルはtscタスクにおいて優れた性能を示している。
しかし、これらのモデルは敵の攻撃に対して脆弱であり、微妙な摂動が予測結果に大きな影響を及ぼす可能性がある。
既存の敵対的手法はしばしば過剰パラメータ化やランダムロジットの摂動に悩まされ、その効果を阻害する。
さらに、攻撃成功率(ASR)の増加は、通常より多くのノイズを発生させ、攻撃をより容易に検出できるようにする。
そこで本研究では,tscモデルに対する新たな攻撃手法であるswapを提案する。
SWAPは、他のロジットの操作を最小限にしながら、第2級ロジットの信頼性を高めることに焦点を当てている。
これは、ターゲットロジット分布と予測ロジット分布とのKullback-Leibler分散を最小化する。
実験の結果, SWAPは従来の手法に比べて50%以上18%増加し, 最先端性能を達成できた。
関連論文リスト
- Correlation Analysis of Adversarial Attack in Time Series Classification [6.117704456424016]
本研究では,時系列分類モデルの攻撃に対する脆弱性について検討した。
攻撃の有効性を高めるため、正規化技術とノイズ導入が示されている。
世界情報を優先するように設計されたモデルは、敵の操作に対する抵抗が大きいことが判明した。
論文 参考訳(メタデータ) (2024-08-21T01:11:32Z) - DALA: A Distribution-Aware LoRA-Based Adversarial Attack against
Language Models [64.79319733514266]
敵攻撃は入力データに微妙な摂動をもたらす可能性がある。
最近の攻撃方法は比較的高い攻撃成功率(ASR)を達成することができる。
そこで本研究では,分散ロラをベースとしたDALA(Adversarial Attack)手法を提案する。
論文 参考訳(メタデータ) (2023-11-14T23:43:47Z) - Enhancing Adversarial Robustness via Score-Based Optimization [22.87882885963586]
敵対的攻撃は、わずかな摂動を導入することによって、ディープニューラルネットワーク分類器を誤認する可能性がある。
ScoreOptと呼ばれる新しい対向防御方式を導入し、テスト時に対向サンプルを最適化する。
実験の結果,本手法は性能とロバスト性の両方において,既存の敵防御よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-10T03:59:42Z) - A Practical Upper Bound for the Worst-Case Attribution Deviations [21.341303776931532]
モデル属性は、複雑なモデルに対する解釈可能性において、ディープニューラルネットワーク(DNN)の重要な構成要素である。
近年の研究では、属性が異なる類似画像を生成する属性攻撃に弱いため、属性手法の安全性に注意が向けられている。
既存の研究はこれらの攻撃に対するDNNの堅牢性を実証的に改善している。
この研究において、制約付き最適化問題を初めて定式化し、ある領域内の雑音によってサンプルが摂動した後の属性の最大の相違を測る上限を導出する。
論文 参考訳(メタデータ) (2023-03-01T09:07:27Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - CARBEN: Composite Adversarial Robustness Benchmark [70.05004034081377]
本稿では,複合対向攻撃 (CAA) が画像に与える影響を実証する。
異なるモデルのリアルタイム推論を提供し、攻撃レベルのパラメータの設定を容易にする。
CAAに対する敵対的堅牢性を評価するためのリーダーボードも導入されている。
論文 参考訳(メタデータ) (2022-07-16T01:08:44Z) - Sparse and Imperceptible Adversarial Attack via a Homotopy Algorithm [93.80082636284922]
少数の敵対的攻撃は、数ピクセルを摂動するだけでディープ・ネットワーク(DNN)を騙すことができる。
近年の取り組みは、他の等級のl_infty摂動と組み合わせている。
本稿では,空間的・神経的摂動に対処するホモトピーアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-10T20:11:36Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Towards Adversarial Patch Analysis and Certified Defense against Crowd
Counting [61.99564267735242]
安全クリティカルな監視システムの重要性から、群衆のカウントは多くの注目を集めています。
近年の研究では、ディープニューラルネットワーク(DNN)の手法が敵の攻撃に弱いことが示されている。
群衆カウントモデルのロバスト性を評価するために,Momentumを用いた攻撃戦略としてAdversarial Patch Attackを提案する。
論文 参考訳(メタデータ) (2021-04-22T05:10:55Z) - Selective and Features based Adversarial Example Detection [12.443388374869745]
Deep Neural Networks (DNN) を中継するセキュリティに敏感なアプリケーションは、Adversarial Examples (AE) を生成するために作られた小さな摂動に弱い。
本稿では,マルチタスク学習環境における選択的予測,モデルレイヤの出力処理,知識伝達概念を用いた教師なし検出機構を提案する。
実験の結果,提案手法は,ホワイトボックスシナリオにおけるテスト攻撃に対する最先端手法と同等の結果を得られ,ブラックボックスとグレーボックスシナリオの精度が向上した。
論文 参考訳(メタデータ) (2021-03-09T11:06:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。