論文の概要: Can Telematics Improve Driving Style? The Use of Behavioural Data in Motor Insurance
- arxiv url: http://arxiv.org/abs/2309.02814v2
- Date: Mon, 30 Dec 2024 02:47:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:02:15.296821
- Title: Can Telematics Improve Driving Style? The Use of Behavioural Data in Motor Insurance
- Title(参考訳): テレマティクスは運転スタイルを改善できるか? : 自動車保険における行動データの利用
- Authors: Alberto Cevolini, Elena Morotti, Elena Esposito, Lorenzo Romanelli, Riccardo Tisseur, Cristiano Misani,
- Abstract要約: 自動車保険は、テレマティクスデータを使用して、個々の運転スタイルを理解し、革新的なコーチング戦略を実装することができる。
その目的は、運転スタイルの改善を促進することである。
この改善の前提条件は、ドライバーがデジタルエンゲージメント、すなわちアプリと対話することである。
- 参考スコア(独自算出の注目度): 0.13194391758295113
- License:
- Abstract: Motor insurance can use telematics data not only to understand the individual driving style, but also to implement innovative coaching strategies that feed back to the drivers, through an app, the aggregated information extracted from the data. The purpose is to encourage an improvement in their driving style. Precondition for this improvement is that drivers are digitally engaged, that is, they interact with the app. Our hypothesis is that the effectiveness of current experimentations depends on the integration of two distinct types of behavioural data: behavioural data on driving style and behavioural data on users' interaction with the app. Based on the empirical investigation of the dataset of a company selling a telematics motor insurance policy, our research shows that there is a correlation between engagement with the app and improvement of driving style, but the analysis must distinguish different groups of users with different driving abilities, and take into account time differences. Our findings contribute to clarify the methodological challenges that must be addressed when exploring engagement and coaching effectiveness in proactive insurance policies. We conclude by discussing the possibility and difficulties of tracking and using second-order behavioural data related to policyholder engagement with the app.
- Abstract(参考訳): 自動車保険は、個々の運転スタイルを理解するだけでなく、アプリを通じてドライバーにフィードバックする革新的なコーチング戦略を実装するために、テレマティクスデータを利用することができる。
その目的は、運転スタイルの改善を促進することである。
この改善の前提条件は、ドライバーがデジタルエンゲージメント、すなわちアプリと対話することである。
我々の仮説では、現在の実験の有効性は2種類の行動データの統合に依存している。
本研究は、テレマティクスの自動車保険政策を販売している企業のデータセットを実証的に調査した結果、アプリとの関わりと運転スタイルの改善との間には相関関係があることを示唆するが、異なる運転能力を持つ異なるユーザーグループを区別し、時間差を考慮する必要がある。
本研究は, 積極的保険政策におけるエンゲージメントとコーチングの有効性を探求する上で, 対処すべき方法論的課題を明らかにすることに貢献した。
アプリに対するポリシーホルダーの関与に関連する2次行動データの追跡と利用の可能性と難しさについて論じる。
関連論文リスト
- Situation Awareness for Driver-Centric Driving Style Adaptation [3.568617847600189]
本稿では,車両データに基づいて事前学習した視覚特徴エンコーダに基づく状況認識型運転スタイルモデルを提案する。
実験の結果,提案手法は静的な運転スタイルを著しく上回り,高い状況クラスタを形成していることがわかった。
論文 参考訳(メタデータ) (2024-03-28T17:19:16Z) - DriveCoT: Integrating Chain-of-Thought Reasoning with End-to-End Driving [81.04174379726251]
本稿では,DriveCoTというエンド・ツー・エンドの運転データセットを総合的に収集する。
センサーデータ、制御決定、および推論プロセスを示すチェーン・オブ・シークレット・ラベルが含まれている。
我々は,私たちのデータセットに基づいてトレーニングされたDriveCoT-Agentと呼ばれるベースラインモデルを提案し,連鎖予測と最終決定を生成する。
論文 参考訳(メタデータ) (2024-03-25T17:59:01Z) - Robust Driving Policy Learning with Guided Meta Reinforcement Learning [49.860391298275616]
本稿では,ソーシャルカーの多種多様な運転方針を一つのメタ政治として訓練する効率的な方法を提案する。
ソーシャルカーのインタラクションに基づく報酬関数をランダム化することにより、多様な目的を生み出し、メタ政治を効率的に訓練することができる。
本研究では,社会自動車が学習メタ政治によって制御される環境を利用して,エゴ自動車の運転方針の堅牢性を高めるためのトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2023-07-19T17:42:36Z) - Exploring the trade off between human driving imitation and safety for
traffic simulation [0.34410212782758043]
運転方針の学習において,人間の運転の模倣と安全維持との間にはトレードオフが存在することを示す。
両目的を協調的に改善する多目的学習アルゴリズム(MOPPO)を提案する。
論文 参考訳(メタデータ) (2022-08-09T14:30:19Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
データ駆動シミュレータは、ポリシー学習の駆動に高いデータ効率を約束する。
小さな基盤となるデータセットは、インタラクティブな運転を学ぶための興味深い、挑戦的なエッジケースを欠いていることが多い。
本研究では,ロバストな運転方針の学習に塗装されたアドカーを用いたシミュレーション手法を提案する。
論文 参考訳(メタデータ) (2021-11-23T20:14:02Z) - Improving Robustness of Learning-based Autonomous Steering Using
Adversarial Images [58.287120077778205]
自動運転用画像入力における学習アルゴリズムw.r.tの堅牢性を解析するためのフレームワークについて紹介する。
感度分析の結果を用いて, 「操縦への学習」 タスクの総合的性能を向上させるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-26T02:08:07Z) - Urban Sensing based on Mobile Phone Data: Approaches, Applications and
Challenges [67.71975391801257]
モバイルデータ分析における多くの関心は、人間とその行動に関連している。
本研究の目的は,携帯電話データから知識を発見するために実装された手法や手法をレビューすることである。
論文 参考訳(メタデータ) (2020-08-29T15:14:03Z) - Learning Accurate and Human-Like Driving using Semantic Maps and
Attention [152.48143666881418]
本稿では,より正確かつ人間らしく運転できるエンド・ツー・エンド駆動モデルについて検討する。
HERE Technologiesのセマンティックマップとビジュアルマップを活用し、既存のDrive360データセットを拡張します。
私たちのモデルは、実世界の運転データ60時間3000kmのDrive360+HEREデータセットでトレーニングされ、評価されています。
論文 参考訳(メタデータ) (2020-07-10T22:25:27Z) - TripMD: Driving patterns investigation via Motif Analysis [3.42658286826597]
TripMDは、センサ記録から最も関連性の高い駆動パターンを抽出するシステムである。
本システムでは,1人の運転者から多数の運転パターンを抽出できることを示す。
論文 参考訳(メタデータ) (2020-07-07T18:34:31Z) - Mining Personalized Climate Preferences for Assistant Driving [1.6752182911522522]
本研究では,運転者の日常運転において,運転者の嗜好に合った環境制御,運転行動認識,運転推奨のための新しいアプローチを提案する。
iOSアプリと空気質監視センサを備えたクライアントサーバアーキテクチャを用いたプロトタイプが開発されている。
世界中の複数の都市で11,370km(320時間)の運転データに関する実世界実験が行われた。
論文 参考訳(メタデータ) (2020-06-16T00:45:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。