論文の概要: On strategies for risk management and decision making under uncertainty shared across multiple fields
- arxiv url: http://arxiv.org/abs/2309.03133v2
- Date: Wed, 12 Mar 2025 19:38:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:49:12.140167
- Title: On strategies for risk management and decision making under uncertainty shared across multiple fields
- Title(参考訳): 複数の分野にまたがる不確実性の下でのリスク管理と意思決定の戦略について
- Authors: Alexander Gutfraind,
- Abstract要約: 本稿では、このような戦略の110以上の例を見つけ、リスクに対するこのアプローチをRDOT: Risk-reducing Design and Operations Toolkitと呼ぶ。
RDOT戦略は、構造的、反応性、形式的、敵対的、多段階、ポジティブの6つの幅広いカテゴリに分類される。
全体的なRDOTは、不確実性に対する多目的応答の見過ごされたクラスを表している。
- 参考スコア(独自算出の注目度): 55.2480439325792
- License:
- Abstract: Decision theory recognizes two principal approaches to solving problems under uncertainty: probabilistic models and cognitive heuristics. However, engineers, public planners and decision-makers in other fields seem to employ solution strategies that do not fall into either field, i.e., strategies such as robust design and contingency planning. In addition, identical strategies appear in several fields and disciplines, pointing to an important shared toolkit. The focus of this paper is to develop a systematic understanding of such strategies and develop a framework to better employ them in decision making and risk management. The paper finds more than 110 examples of such strategies and this approach to risk is termed RDOT: Risk-reducing Design and Operations Toolkit. RDOT strategies fall into six broad categories: structural, reactive, formal, adversarial, multi-stage and positive. RDOT strategies provide an efficient response even to radical uncertainty or unknown unknowns that are challenging to address with probabilistic methods. RDOT could be incorporated into decision theory using workflows, multi-objective optimization and multi-attribute utility theory. Overall, RDOT represents an overlooked class of versatile responses to uncertainty. Because RDOT strategies do not require precise estimation or forecasting, they are particularly helpful in decision problems affected by uncertainty and for resource-constrained decision making.
- Abstract(参考訳): 決定論は、確率論的モデルと認知的ヒューリスティックという、不確実性の下で問題を解決するための2つの主要なアプローチを認識する。
しかし、他の分野のエンジニア、公共計画家、意思決定者は、どちらの分野にも属さないソリューション戦略、すなわち堅牢な設計や緊急計画のような戦略を採用するように思われる。
さらに、同じ戦略がいくつかの分野や分野に現れ、重要な共有ツールキットを指し示している。
本研究の目的は,このような戦略を体系的に理解し,意思決定やリスク管理に活用するための枠組みを開発することである。
本稿では、このような戦略の110以上の例を見つけ、リスクに対するこのアプローチをRDOT: Risk-reducing Design and Operations Toolkitと呼ぶ。
RDOT戦略は、構造的、反応性、形式的、敵対的、多段階、ポジティブの6つの幅広いカテゴリに分類される。
RDOT戦略は、確率的手法で対処することが難しい急進的な不確実性や未知の未知に対しても効率的な応答を提供する。
RDOTはワークフロー、多目的最適化、多属性ユーティリティ理論を用いて決定理論に組み込むことができる。
全体的なRDOTは、不確実性に対する多目的応答の見過ごされたクラスを表している。
RDOT戦略は正確な見積もりや予測を必要としないため、不確実性による決定問題やリソース制約による意思決定に特に有用である。
関連論文リスト
- Ensembling Portfolio Strategies for Long-Term Investments: A Distribution-Free Preference Framework for Decision-Making and Algorithms [0.0]
本稿では、長期的富という観点から個別の戦略を上回るために、逐次的ポートフォリオのための複数の戦略をまとめることの問題点について考察する。
我々は,市場条件にかかわらず,戦略を組み合わせるための新たな意思決定枠組みを導入する。
シャープ比の小さなトレードオフがあるにもかかわらず、提案した戦略を支持する結果を示す。
論文 参考訳(メタデータ) (2024-06-05T23:08:57Z) - ABI Approach: Automatic Bias Identification in Decision-Making Under Risk based in an Ontology of Behavioral Economics [46.57327530703435]
損失回避のようなバイアスによって引き起こされる損失に対する優先順位を求めるリスクは、課題を引き起こし、深刻なネガティブな結果をもたらす可能性がある。
本研究は,リスクサーチの選好を自動的に識別し,説明することにより,組織意思決定者を支援する新しいソリューションであるABIアプローチを紹介する。
論文 参考訳(メタデータ) (2024-05-22T23:53:46Z) - LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
戦略推論は、戦略を調整しながら、マルチエージェント設定における敵の行動を理解し、予測する必要がある。
大規模言語モデルを用いた戦略的推論に関連するスコープ,アプリケーション,方法論,評価指標について検討する。
戦略的推論を重要な認知能力として重要視し、将来の研究の方向性や潜在的な改善に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - K-Level Reasoning: Establishing Higher Order Beliefs in Large Language Models for Strategic Reasoning [76.3114831562989]
マルチエージェント環境で戦略を動的に適応させるためには、LLM(Large Language Model)エージェントが必要である。
我々は,「K-Level Reasoning with Large Language Models (K-R)」という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-02T16:07:05Z) - StrategyLLM: Large Language Models as Strategy Generators, Executors, Optimizers, and Evaluators for Problem Solving [76.5322280307861]
StrategyLLM は LLM が帰納的推論、特定のタスクインスタンスからの一般的な戦略の導出、帰納的推論を可能にし、これらの一般的な戦略を特定のタスク例に適用し、一般化可能で一貫した数発のプロンプトを構築する。
実験の結果、StrategyLLMは、数学推論(34.2%$rightarrow$38.8%)、コモンセンス推論(70.3%$rightarrow$72.5%)、アルゴリズム推論(73.7%$rightarrow$85.0)を含む、4つの難しいタスクにまたがる13のデータセットに対して、人間によるアノテートソリューションを必要とする競争ベースラインのCoT-SCよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-11-15T09:18:09Z) - On solving decision and risk management problems subject to uncertainty [91.3755431537592]
不確実性は意思決定とリスク管理において広範囲にわたる課題である。
本稿では,このような戦略を体系的に理解し,その適用範囲を判断し,それらをうまく活用するための枠組みを開発する。
論文 参考訳(メタデータ) (2023-01-18T19:16:23Z) - Strategic Decisions Survey, Taxonomy, and Future Directions from
Artificial Intelligence Perspective [15.649335092388897]
我々は,6つの基数,18のカテゴリー,54のフレームからなる意思決定フレームの体系的な分類法を開発した。
従来のモデルと比較して、確実性、不確実性、複雑性、あいまいさ、カオス、無知を扱う不合理、非合理的なフレームcをカバーしている。
論文 参考訳(メタデータ) (2022-10-22T07:01:10Z) - Autoencoders for strategic decision support [5.922780668675565]
戦略的に関連する粒度のフィードバックを提供するために,オートエンコーダを導入,拡張する。
最初の実験は、専門家が意思決定に不整合であることを示し、戦略的な意思決定支援の必要性を強調している。
本研究は,人間の意思決定におけるいくつかの主要な弱点を確認し,モデルと人間の相乗効果の重要性を強調した。
論文 参考訳(メタデータ) (2020-05-03T12:54:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。