Stochastic bra-ket interpretation of quantum mechanics
- URL: http://arxiv.org/abs/2309.03151v2
- Date: Sat, 27 Apr 2024 10:50:45 GMT
- Title: Stochastic bra-ket interpretation of quantum mechanics
- Authors: Hans Christian Öttinger,
- Abstract summary: We show that entanglement effects do not originate from superpositions of wave functions, but result from the bilinear structure of density matrices.
Quantum interference appears as a multiplicative phenomenon rather than an additive superposition mechanism.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The stochastic nature of quantum mechanics is more naturally reflected in a bilinear two-process representation of density matrices rather than in squared wave functions. This proposition comes with a remarkable change of the entanglement mechanism: entanglement effects do not originate from superpositions of wave functions, but result from the bilinear structure of density matrices. Quantum interference appears as a multiplicative phenomenon rather than an additive superposition mechanism. We propose two general requirements such that the bilinear representation of density matrices is given in terms of two uniquely defined, identically distributed, Markovian stochastic jump processes. These general ideas are illustrated for the Einstein-Podolsky-Rosen and double-slit experiments. The expression of the stochastic nature of quantum mechanics in terms of random variables rather than their probability distributions facilitates an ontological viewpoint and leads us to a bra-ket interpretation of quantum mechanics.
Related papers
- A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Quantizing the Quantum Uncertainty [0.0]
We discuss the quantization of the quantum uncertainty as an operator acting on wave-functions over field space.
We show how this spectrum appears in the value of the coupling of the effective conformal potential driving the evolution of extended Gaussian wave-packets.
We conclude with an open question: is it possible to see experimental signatures of the quantization of the quantum uncertainty in non-relativistic physics?
arXiv Detail & Related papers (2023-07-03T14:40:14Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Why we should interpret density matrices as moment matrices: the case of
(in)distinguishable particles and the emergence of classical reality [69.62715388742298]
We introduce a formulation of quantum theory (QT) as a general probabilistic theory but expressed via quasi-expectation operators (QEOs)
We will show that QT for both distinguishable and indistinguishable particles can be formulated in this way.
We will show that finitely exchangeable probabilities for a classical dice are as weird as QT.
arXiv Detail & Related papers (2022-03-08T14:47:39Z) - Dissipative quantum dynamics, phase transitions and non-Hermitian random
matrices [0.0]
We work in the framework of the dissipative Dicke model which is archetypal of symmetry-breaking phase transitions in open quantum systems.
We establish that the Liouvillian describing the quantum dynamics exhibits distinct spectral features of integrable and chaotic character.
Our approach can be readily adapted for classifying the nature of quantum dynamics across dissipative critical points in other open quantum systems.
arXiv Detail & Related papers (2021-12-10T19:00:01Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Quantum Origins of the Density Operator [0.0]
Students in quantum mechanics are taught that the wave function contains all knowable information about an isolated system.
This paper brings attention to the fact that the density matrix can be reconciled with the underlying quantum-mechanical description.
arXiv Detail & Related papers (2020-12-25T00:24:28Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - A First Principles Derivation of Classical and Quantum Mechanics as the
Natural Theories for Smooth Stochastic Paths [0.0]
The Schr"odinger equation is shown to be the natural exact equation for describing smooth processes.
The derivation offers a clear picture for Quantum Mechanics as a locally realistic hidden variable theory.
arXiv Detail & Related papers (2020-11-18T10:05:58Z) - A quantum system with a non-Hermitian Hamiltonian [0.0]
relevance in Physics of non-Hermitian operators with real eigenvalues is being widely recognized.
In this note, a quantum system described by a non-Hermitian Hamiltonian is investigated.
arXiv Detail & Related papers (2020-04-15T17:03:45Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.