A quantum system with a non-Hermitian Hamiltonian
- URL: http://arxiv.org/abs/2004.07205v1
- Date: Wed, 15 Apr 2020 17:03:45 GMT
- Title: A quantum system with a non-Hermitian Hamiltonian
- Authors: Nat\'alia Bebiano, Jo\~ao da Provid\^encia, S.Nishiyama, Jo\~ao P. da
Provid\^encia
- Abstract summary: relevance in Physics of non-Hermitian operators with real eigenvalues is being widely recognized.
In this note, a quantum system described by a non-Hermitian Hamiltonian is investigated.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The relevance in Physics of non-Hermitian operators with real eigenvalues is
being widely recognized not only in quantum mechanics but also in other areas,
such as quantum optics, quantum fluid dynamics and quantum field theory.
%stochastic processesand so on. In this note, a quantum system described by a
non-Hermitian Hamiltonian, which is constituted by two types of interacting
bosons, is investigated. The real eigenvalues of the Hamiltonian are explicitly
determined, as well as complete biorthogonal sets of eigenfunctions of the
Hamiltonian and its adjoint. The diagonal representation of $H$ is obtained
using pseudo-bosonic operators.
Related papers
- Simulating NMR Spectra with a Quantum Computer [49.1574468325115]
This paper provides a formalization of the complete procedure of the simulation of a spin system's NMR spectrum.
We also explain how to diagonalize the Hamiltonian matrix with a quantum computer, thus enhancing the overall process's performance.
arXiv Detail & Related papers (2024-10-28T08:43:40Z) - Geometric Interpretation of a nonlinear extension of Quantum Mechanics [0.0]
We show that the non-linear terms can be viewed as giving rise to gravitational effects.
We suggest that the two components of the wave function represent the system described by the Hamiltonian H in two different regions of spacetime.
arXiv Detail & Related papers (2024-05-12T14:01:31Z) - Coherence generation with Hamiltonians [44.99833362998488]
We explore methods to generate quantum coherence through unitary evolutions.
This quantity is defined as the maximum derivative of coherence that can be achieved by a Hamiltonian.
We identify the quantum states that lead to the largest coherence derivative induced by the Hamiltonian.
arXiv Detail & Related papers (2024-02-27T15:06:40Z) - Measuring quantum geometric tensor of non-Abelian system in
superconducting circuits [21.82634956452952]
We use a four-qubit quantum system in superconducting circuits to construct a degenerate Hamiltonian with parametric modulation.
We reveal its topological feature by extracting the topological invariant, demonstrating an effective protocol for quantum simulation of a non-Abelian system.
arXiv Detail & Related papers (2022-09-26T01:08:39Z) - Photonic quantum simulations of coupled $PT$-symmetric Hamiltonians [0.0]
We use a programmable integrated photonic chip to simulate a model comprised of twin pairs of $PT$-symmetric Hamiltonians, with each the time reverse of its twin.
We simulate quantum dynamics across exceptional points including two- and three-particle interference, and a particle-trembling behaviour that arises due to interference between subsystems undergoing time-reversed evolutions.
arXiv Detail & Related papers (2022-02-01T11:54:10Z) - Eigenvalues and Eigenstates of Quantum Rabi Model [0.0]
We present an approach to the exact diagonalization of the quantum Rabi Hamiltonian.
It is shown that the obtained eigenstates can be represented in the basis of the eigenstates of the Jaynes-Cummings Hamiltonian.
arXiv Detail & Related papers (2021-04-26T17:45:41Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Hybrid Quantum-Classical Eigensolver Without Variation or Parametric
Gates [0.0]
We present a process for obtaining the eigenenergy spectrum of electronic quantum systems.
This is achieved by projecting the Hamiltonian of a quantum system onto a limited effective Hilbert space.
A process for preparing short depth quantum circuits to measure the corresponding diagonal and off-diagonal terms of the effective Hamiltonian is given.
arXiv Detail & Related papers (2020-08-26T02:31:24Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Construction of quantum wavefunctions for non-separable but integrable
two-dimensional Hamiltonian systems by means of the boundary values on the
classical caustics [0.0]
It is possible to construct the quantum wave functions for non-separable but integrable two-dimensional Hamiltonian systems.
The method is applied both to the Schrodinger equation, and to the quantum Hamilton-Jacobi equation.
arXiv Detail & Related papers (2020-04-28T10:43:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.