Learning a Patent-Informed Biomedical Knowledge Graph Reveals Technological Potential of Drug Repositioning Candidates
- URL: http://arxiv.org/abs/2309.03227v2
- Date: Wed, 24 Jul 2024 08:31:21 GMT
- Title: Learning a Patent-Informed Biomedical Knowledge Graph Reveals Technological Potential of Drug Repositioning Candidates
- Authors: Yongseung Jegal, Jaewoong Choi, Jiho Lee, Ki-Su Park, Seyoung Lee, Janghyeok Yoon,
- Abstract summary: This study presents a novel protocol to analyse various sources such as pharmaceutical patents and biomedical databases.
We identify drug repositioning candidates with both technological potential and scientific evidence.
Our case study on Alzheimer's disease demonstrates its efficacy and feasibility.
- Score: 6.268435617836703
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Drug repositioning-a promising strategy for discovering new therapeutic uses for existing drugs-has been increasingly explored in the computational science literature using biomedical databases. However, the technological potential of drug repositioning candidates has often been overlooked. This study presents a novel protocol to comprehensively analyse various sources such as pharmaceutical patents and biomedical databases, and identify drug repositioning candidates with both technological potential and scientific evidence. To this end, first, we constructed a scientific biomedical knowledge graph (s-BKG) comprising relationships between drugs, diseases, and genes derived from biomedical databases. Our protocol involves identifying drugs that exhibit limited association with the target disease but are closely located in the s-BKG, as potential drug candidates. We constructed a patent-informed biomedical knowledge graph (p-BKG) by adding pharmaceutical patent information. Finally, we developed a graph embedding protocol to ascertain the structure of the p-BKG, thereby calculating the relevance scores of those candidates with target disease-related patents to evaluate their technological potential. Our case study on Alzheimer's disease demonstrates its efficacy and feasibility, while the quantitative outcomes and systematic methods are expected to bridge the gap between computational discoveries and successful market applications in drug repositioning research.
Related papers
- DrugAgent: Explainable Drug Repurposing Agent with Large Language Model-based Reasoning [10.528489471229946]
We propose a multi-agent framework to enhance the drug repurposing process using state-of-the-art machine learning techniques and knowledge integration.
Our framework comprises several specialized agents: an AI Agent trains robust drug-target interaction (DTI) models; a Knowledge Graph Agent utilizes the drug-gene interaction database (DGIdb) to systematically extract DTIs.
By integrating outputs from these agents, our system effectively harnesses diverse data sources, including external databases, to propose viable repurposing candidates.
arXiv Detail & Related papers (2024-08-23T21:24:59Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
We propose EmerGNN, a graph neural network (GNN) that can effectively predict interactions for emerging drugs.
EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths.
Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
arXiv Detail & Related papers (2023-11-15T06:34:00Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
We propose a novel setting and models for in-context drug synergy learning.
We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets.
Our goal is to predict additional drug synergy relationships in that context.
arXiv Detail & Related papers (2023-06-19T17:03:46Z) - Knowledge-augmented Graph Machine Learning for Drug Discovery: A Survey [6.288056740658763]
Graph Machine Learning (GML) has gained considerable attention for its exceptional ability to model graph-structured biomedical data.
Recent studies have proposed integrating external biomedical knowledge into the GML pipeline to realise more precise and interpretable drug discovery.
arXiv Detail & Related papers (2023-02-16T12:38:01Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - KGML-xDTD: A Knowledge Graph-based Machine Learning Framework for Drug
Treatment Prediction and Mechanism Description [11.64859287146094]
We propose KGML-xDTD: a Knowledge Graph-based Machine Learning framework for explainably predicting Drugs Treating Diseases.
We leverage knowledge-and-publication based information to extract biologically meaningful "demonstration paths" as the intermediate guidance in the Graph-based Reinforcement Learning process.
arXiv Detail & Related papers (2022-11-30T17:05:22Z) - Deep learning for drug repurposing: methods, databases, and applications [54.08583498324774]
Repurposing existing drugs for new therapies is an attractive solution that accelerates drug development at reduced experimental costs.
In this review, we introduce guidelines on how to utilize deep learning methodologies and tools for drug repurposing.
arXiv Detail & Related papers (2022-02-08T09:42:08Z) - Discovering Drug-Target Interaction Knowledge from Biomedical Literature [107.98712673387031]
The Interaction between Drugs and Targets (DTI) in human body plays a crucial role in biomedical science and applications.
As millions of papers come out every year in the biomedical domain, automatically discovering DTI knowledge from literature becomes an urgent demand in the industry.
We explore the first end-to-end solution for this task by using generative approaches.
We regard the DTI triplets as a sequence and use a Transformer-based model to directly generate them without using the detailed annotations of entities and relations.
arXiv Detail & Related papers (2021-09-27T17:00:14Z) - A Review of Biomedical Datasets Relating to Drug Discovery: A Knowledge
Graph Perspective [4.746544835197422]
We aim to help guide machine learning and knowledge graph practitioners who are interested in applying new techniques to the drug discovery field.
We detail publicly available primary data sources containing information suitable for use in constructing various drug discovery focused knowledge graphs.
arXiv Detail & Related papers (2021-02-19T17:49:38Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.