論文の概要: Federated Learning Over Images: Vertical Decompositions and Pre-Trained
Backbones Are Difficult to Beat
- arxiv url: http://arxiv.org/abs/2309.03237v1
- Date: Wed, 6 Sep 2023 02:09:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-08 15:28:44.682039
- Title: Federated Learning Over Images: Vertical Decompositions and Pre-Trained
Backbones Are Difficult to Beat
- Title(参考訳): 画像による連合学習:垂直分解と事前学習されたバックボーンは打ち負かすのが難しい
- Authors: Erdong Hu, Yuxin Tang, Anastasios Kyrillidis, Chris Jermaine
- Abstract要約: フェデレートされた環境で学習するアルゴリズムを多数評価する。
多様な画像の集合を持たないデータセットの学習が結果に影響を及ぼすかどうかを検討する。
ニューラルネットワークを垂直に分解することは、最良の結果をもたらすように思える。
- 参考スコア(独自算出の注目度): 17.30751773894676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We carefully evaluate a number of algorithms for learning in a federated
environment, and test their utility for a variety of image classification
tasks. We consider many issues that have not been adequately considered before:
whether learning over data sets that do not have diverse sets of images affects
the results; whether to use a pre-trained feature extraction "backbone"; how to
evaluate learner performance (we argue that classification accuracy is not
enough), among others. Overall, across a wide variety of settings, we find that
vertically decomposing a neural network seems to give the best results, and
outperforms more standard reconciliation-used methods.
- Abstract(参考訳): フェデレーション環境での学習のためのアルゴリズムを注意深く評価し,様々な画像分類タスクにおける有用性をテストする。
画像の多様な集合を持たないデータセットの学習が結果に影響を与えるかどうか、事前学習した特徴抽出「バックボーン」を使用するか、学習者のパフォーマンスを評価するか(分類精度が不十分であると主張する)など、これまで十分に考慮されていなかった多くの課題について考察する。
全体として、さまざまな設定において、ニューラルネットワークを垂直に分解することで最良の結果が得られることが分かり、より標準的な和解手法よりも優れています。
関連論文リスト
- Synergy and Diversity in CLIP: Enhancing Performance Through Adaptive Backbone Ensembling [58.50618448027103]
コントラスト言語-画像事前学習(CLIP)は画像表現学習において顕著な手法である。
本稿では,CLIPを訓練した視覚バックボーンの違いについて検討する。
方法によって、最高の単一のバックボーンよりも39.1%の精度が著しく向上する。
論文 参考訳(メタデータ) (2024-05-27T12:59:35Z) - Mix-up Self-Supervised Learning for Contrast-agnostic Applications [33.807005669824136]
コントラストに依存しないアプリケーションのための,最初の混合型自己教師型学習フレームワークを提案する。
クロスドメイン・ミックスアップに基づく画像間の低分散に対処し、画像再構成と透明性予測に基づくプレテキストタスクを構築する。
論文 参考訳(メタデータ) (2022-04-02T16:58:36Z) - Constrained Deep One-Class Feature Learning For Classifying Imbalanced
Medical Images [4.211466076086617]
データの不均衡問題に対処するために、一級分類が注目を集めている。
本稿では,コンパクトな特徴を学習するための新しい深層学習手法を提案する。
提案手法は,各クラスに関連するより関連性の高い特徴を学習し,多数派と少数派のサンプルを識別しやすくする。
論文 参考訳(メタデータ) (2021-11-20T15:25:24Z) - LibFewShot: A Comprehensive Library for Few-shot Learning [78.58842209282724]
近年,画像分類に注目が集まり,近年顕著な進歩が見られた。
近年の研究では、データ強化、事前学習、知識蒸留、自己超越といった多くの一般的な手法や技法が、数発の学習法の性能を大幅に向上させる可能性があることが暗黙的に示されている。
そこで本研究では,PyTorchに固有の単一言語を組み込んだ一貫したフレームワークにおいて,17の最先端の複数ショット学習手法を再実装することにより,小ショット学習のための総合ライブラリ(LibFewShot)を提案する。
論文 参考訳(メタデータ) (2021-09-10T14:12:37Z) - Multi-Label Image Classification with Contrastive Learning [57.47567461616912]
コントラスト学習の直接適用は,複数ラベルの場合においてほとんど改善できないことを示す。
完全教師付き環境下でのコントラスト学習を用いたマルチラベル分類のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-24T15:00:47Z) - Boosting few-shot classification with view-learnable contrastive
learning [19.801016732390064]
埋め込み空間の細粒度構造を学習するために,数ショットの分類に対照的な損失を導入する。
我々は,同じ画像の異なるビューを自動的に生成する学習学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-07-20T03:13:33Z) - Few-Shot Learning with Part Discovery and Augmentation from Unlabeled
Images [79.34600869202373]
帰納的バイアスは、ラベルなし画像の平坦な集合から学習でき、目に見えるクラスと目に見えないクラスの間で伝達可能な表現としてインスタンス化されることを示す。
具体的には、トランスファー可能な表現を学習するための、新しいパートベース自己教師型表現学習手法を提案する。
我々の手法は印象的な結果をもたらし、それまでの最高の教師なし手法を7.74%、9.24%上回った。
論文 参考訳(メタデータ) (2021-05-25T12:22:11Z) - Unifying Remote Sensing Image Retrieval and Classification with Robust
Fine-tuning [3.6526118822907594]
新しい大規模トレーニングおよびテストデータセットであるSF300で、リモートセンシングイメージの検索と分類を統一することを目指しています。
本研究では,ImageNetの事前学習ベースラインと比較して,9つのデータセットの検索性能と分類性能を体系的に向上させることを示す。
論文 参考訳(メタデータ) (2021-02-26T11:01:30Z) - Grafit: Learning fine-grained image representations with coarse labels [114.17782143848315]
本稿では,学習ラベルの提供するものよりも細かな表現を学習する問題に対処する。
粗いラベルと下層の細粒度潜在空間を併用することにより、カテゴリレベルの検索手法の精度を大幅に向上させる。
論文 参考訳(メタデータ) (2020-11-25T19:06:26Z) - Impact of base dataset design on few-shot image classification [33.31817928613412]
本研究では,異なる画像集合上で訓練された深部特徴を,数ショットの分類設定で評価することにより,トレーニングデータの変動の影響を系統的に研究する。
簡単なベースラインをアートアルゴリズムの先進的な状態に置き換えるよりも,数ショットの分類において,ベースデータセット設計がパフォーマンスを劇的に向上させることを示す。
論文 参考訳(メタデータ) (2020-07-17T09:58:50Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
コントラスト学習は教師なし表現学習に革命をもたらした。
現在のコントラストモデルでは、前景オブジェクトのローカライズには効果がない。
本稿では,背景変化を学習するためのデータ駆動型手法を提案する。
論文 参考訳(メタデータ) (2020-04-14T16:29:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。