論文の概要: EGIC: Enhanced Low-Bit-Rate Generative Image Compression Guided by
Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2309.03244v1
- Date: Wed, 6 Sep 2023 08:50:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-08 15:31:00.798935
- Title: EGIC: Enhanced Low-Bit-Rate Generative Image Compression Guided by
Semantic Segmentation
- Title(参考訳): EGIC:セマンティックセグメンテーションによる低ビットレート生成画像圧縮の強化
- Authors: Nikolai K\"orber, Eduard Kromer, Andreas Siebert, Sascha Hauke, Daniel
Mueller-Gritschneder
- Abstract要約: EGICは1つのモデルから歪み知覚曲線を効率的にトラバースできる新しい画像圧縮法である。
MSE最適化とGAN最適化デコーダ出力の間の残差を予測する暗黙的に符号化された画像の変種を提案する。
受信側では、残余がGANベースの再構成に与える影響を制御することができる。
- 参考スコア(独自算出の注目度): 0.034614102792296056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce EGIC, a novel generative image compression method that allows
traversing the distortion-perception curve efficiently from a single model.
Specifically, we propose an implicitly encoded variant of image interpolation
that predicts the residual between a MSE-optimized and GAN-optimized decoder
output. On the receiver side, the user can then control the impact of the
residual on the GAN-based reconstruction. Together with improved GAN-based
building blocks, EGIC outperforms a wide-variety of perception-oriented and
distortion-oriented baselines, including HiFiC, MRIC and DIRAC, while
performing almost on par with VTM-20.0 on the distortion end. EGIC is simple to
implement, very lightweight (e.g. 0.18x model parameters compared to HiFiC) and
provides excellent interpolation characteristics, which makes it a promising
candidate for practical applications targeting the low bit range.
- Abstract(参考訳): 本稿では,1つのモデルから歪み知覚曲線を効率的にトラバースできる新しい画像圧縮手法EGICを紹介する。
具体的には、MSE最適化とGAN最適化デコーダ出力の間の残差を予測する暗黙的に符号化された画像補間法を提案する。
受信側では、残余がGANベースの再構成に与える影響を制御することができる。
GANベースのビルディングブロックの改善とともに、EGICはHiFiC、MRIC、DIRACなど、認識指向および歪み指向のベースラインを多種多様に上回り、歪み端ではVTM-20.0とほぼ同等に動作している。
EGICは実装が簡単で、非常に軽量(例えばHiFiCと比較して0.18xモデルパラメータ)で、補間特性に優れたため、低ビット範囲を対象とする実用的なアプリケーションには有望な候補である。
関連論文リスト
- DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - AICT: An Adaptive Image Compression Transformer [18.05997169440533]
我々は、より単純で効果的なTranformerベースのチャネルワイド自動回帰事前モデルを提案し、絶対画像圧縮変換器(ICT)を実現する。
提案したICTは、潜在表現からグローバルとローカルの両方のコンテキストをキャプチャできる。
我々は、サンドイッチのConvNeXtベースのプリ/ポストプロセッサで学習可能なスケーリングモジュールを活用し、よりコンパクトな潜在表現を正確に抽出する。
論文 参考訳(メタデータ) (2023-07-12T11:32:02Z) - Joint Hierarchical Priors and Adaptive Spatial Resolution for Efficient
Neural Image Compression [11.25130799452367]
ニューラル画像圧縮(NIC)のための絶対画像圧縮変換器(ICT)を提案する。
ICTは、潜在表現からグローバルコンテキストとローカルコンテキストの両方をキャプチャし、量子化された潜在表現の分布をパラメータ化する。
我々のフレームワークは、多目的ビデオ符号化(VVC)参照符号化(VTM-18.0)とニューラルスウィンT-ChARMに対する符号化効率とデコーダ複雑性のトレードオフを大幅に改善する。
論文 参考訳(メタデータ) (2023-07-05T13:17:14Z) - GAN-based Image Compression with Improved RDO Process [20.00340507091567]
速度歪みの最適化を改良した新しいGANベースの画像圧縮手法を提案する。
これを実現するために、DisTSとMS-SSIMのメトリクスを用いて、色、テクスチャ、構造における知覚的変性を測定する。
提案手法は,既存のGAN法および最先端ハイブリッド(VVC)よりも優れている。
論文 参考訳(メタデータ) (2023-06-18T03:21:11Z) - Cycle-Interactive Generative Adversarial Network for Robust Unsupervised
Low-Light Enhancement [109.335317310485]
CIGAN(Cycle-Interactive Generative Adversarial Network)は、低照度画像間の照明分布の転送を改善できるだけでなく、詳細な信号も操作できる。
特に、提案した低照度誘導変換は、低照度GAN生成器から劣化GAN生成器へ、低照度画像の特徴をフォワードする。
論文 参考訳(メタデータ) (2022-07-03T06:37:46Z) - Degradation-Aware Unfolding Half-Shuffle Transformer for Spectral
Compressive Imaging [142.11622043078867]
圧縮画像と物理マスクからパラメータを推定し,これらのパラメータを用いて各イテレーションを制御する,DAUF(Degradation-Aware Unfolding Framework)を提案する。
HST を DAUF に接続することにより,HSI 再構成のための変換器の深部展開法であるデグレーション・アウェア・アンフォールディング・ハーフシャッフル変換器 (DAUHST) を確立した。
論文 参考訳(メタデータ) (2022-05-20T11:37:44Z) - One-Shot Adaptation of GAN in Just One CLIP [51.188396199083336]
本稿では,CLIP空間を統一した単一ショットGAN適応方式を提案する。
具体的には、CLIP誘導潜在最適化を用いて、ソースジェネレータ内の参照画像検索という2段階のトレーニング戦略を採用する。
対象のテクスチャで多様な出力を生成し,質的かつ定量的にベースラインモデルより優れていることを示す。
論文 参考訳(メタデータ) (2022-03-17T13:03:06Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z) - Orthogonal Features Based EEG Signals Denoising Using Fractional and
Compressed One-Dimensional CNN AutoEncoder [3.8580784887142774]
本稿では脳波(EEG)信号の分数的1次元畳み込みニューラルネットワーク(CNN)オートエンコーダを提案する。
脳波信号は、主に筋肉アーチファクト(MA)によって、記録過程中にしばしばノイズによって汚染される。
論文 参考訳(メタデータ) (2021-04-16T13:58:05Z) - Generalized Octave Convolutions for Learned Multi-Frequency Image
Compression [20.504561050200365]
本稿では,初めて学習されたマルチ周波数画像圧縮とエントロピー符号化手法を提案する。
これは最近開発されたオクターブの畳み込みに基づいて、潜水剤を高周波(高分解能)成分に分解する。
提案した一般化オクターブ畳み込みは、他のオートエンコーダベースのコンピュータビジョンタスクの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-02-24T01:35:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。