MEGANet: Multi-Scale Edge-Guided Attention Network for Weak Boundary
Polyp Segmentation
- URL: http://arxiv.org/abs/2309.03329v3
- Date: Sun, 5 Nov 2023 02:50:42 GMT
- Title: MEGANet: Multi-Scale Edge-Guided Attention Network for Weak Boundary
Polyp Segmentation
- Authors: Nhat-Tan Bui and Dinh-Hieu Hoang and Quang-Thuc Nguyen and Minh-Triet
Tran and Ngan Le
- Abstract summary: Efficient polyp segmentation in healthcare plays a critical role in enabling early diagnosis of colorectal cancer.
We propose Multi-Scale Edge-Guided Attention Network (MEGANet) tailored specifically for polyp segmentation within colonoscopy images.
MEGANet is designed as an end-to-end framework, encompassing three key modules: an encoder, a decoder, and the Edge-Guided Attention module (EGA) that employs the Laplacian Operator to accentuate polyp boundaries.
- Score: 11.190960453535542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient polyp segmentation in healthcare plays a critical role in enabling
early diagnosis of colorectal cancer. However, the segmentation of polyps
presents numerous challenges, including the intricate distribution of
backgrounds, variations in polyp sizes and shapes, and indistinct boundaries.
Defining the boundary between the foreground (i.e. polyp itself) and the
background (surrounding tissue) is difficult. To mitigate these challenges, we
propose Multi-Scale Edge-Guided Attention Network (MEGANet) tailored
specifically for polyp segmentation within colonoscopy images. This network
draws inspiration from the fusion of a classical edge detection technique with
an attention mechanism. By combining these techniques, MEGANet effectively
preserves high-frequency information, notably edges and boundaries, which tend
to erode as neural networks deepen. MEGANet is designed as an end-to-end
framework, encompassing three key modules: an encoder, which is responsible for
capturing and abstracting the features from the input image, a decoder, which
focuses on salient features, and the Edge-Guided Attention module (EGA) that
employs the Laplacian Operator to accentuate polyp boundaries. Extensive
experiments, both qualitative and quantitative, on five benchmark datasets,
demonstrate that our MEGANet outperforms other existing SOTA methods under six
evaluation metrics. Our code is available at
https://github.com/UARK-AICV/MEGANet.
Related papers
- MSA$^2$Net: Multi-scale Adaptive Attention-guided Network for Medical Image Segmentation [8.404273502720136]
We introduce MSA$2$Net, a new deep segmentation framework featuring an expedient design of skip-connections.
We propose a Multi-Scale Adaptive Spatial Attention Gate (MASAG) to ensure that spatially relevant features are selectively highlighted.
Our MSA$2$Net outperforms state-of-the-art (SOTA) works or matches their performance.
arXiv Detail & Related papers (2024-07-31T14:41:10Z) - EPPS: Advanced Polyp Segmentation via Edge Information Injection and Selective Feature Decoupling [5.453850739960517]
We propose a novel model named Edge-Prioritized Polyp (EPPS)
Specifically, we incorporate an Edge Mapping Engine (EME) aimed at accurately extracting the edges of polyps.
We also introduce a component called Selective Feature Decoupler (SFD) to suppress the influence of noise and extraneous features on the model.
arXiv Detail & Related papers (2024-05-20T07:41:04Z) - Edge-aware Feature Aggregation Network for Polyp Segmentation [40.3881565207086]
In this study, we present a novel Edge-aware Feature Aggregation Network (EFA-Net) for polyp segmentation.
EFA-Net can fully make use of cross-level and multi-scale features to enhance the performance of polyp segmentation.
Experimental results on five widely adopted colonoscopy datasets show that our EFA-Net outperforms state-of-the-art polyp segmentation methods in terms of generalization and effectiveness.
arXiv Detail & Related papers (2023-09-19T11:09:38Z) - SegT: A Novel Separated Edge-guidance Transformer Network for Polyp
Segmentation [10.144870911523622]
We propose a novel separated edge-guidance transformer (SegT) network that aims to build an effective polyp segmentation model.
A transformer encoder that learns a more robust representation than existing CNN-based approaches was specifically applied.
To evaluate the effectiveness of SegT, we conducted experiments with five challenging public datasets.
arXiv Detail & Related papers (2023-06-19T08:32:05Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - Adaptive Context Selection for Polyp Segmentation [99.9959901908053]
We propose an adaptive context selection based encoder-decoder framework which is composed of Local Context Attention (LCA) module, Global Context Module (GCM) and Adaptive Selection Module (ASM)
LCA modules deliver local context features from encoder layers to decoder layers, enhancing the attention to the hard region which is determined by the prediction map of previous layer.
GCM aims to further explore the global context features and send to the decoder layers. ASM is used for adaptive selection and aggregation of context features through channel-wise attention.
arXiv Detail & Related papers (2023-01-12T04:06:44Z) - BCS-Net: Boundary, Context and Semantic for Automatic COVID-19 Lung
Infection Segmentation from CT Images [83.82141604007899]
BCS-Net is a novel network for automatic COVID-19 lung infection segmentation from CT images.
BCS-Net follows an encoder-decoder architecture, and more designs focus on the decoder stage.
In each BCSR block, the attention-guided global context (AGGC) module is designed to learn the most valuable encoder features for decoder.
arXiv Detail & Related papers (2022-07-17T08:54:07Z) - Grasp-Oriented Fine-grained Cloth Segmentation without Real Supervision [66.56535902642085]
This paper tackles the problem of fine-grained region detection in deformed clothes using only a depth image.
We define up to 6 semantic regions of varying extent, including edges on the neckline, sleeve cuffs, and hem, plus top and bottom grasping points.
We introduce a U-net based network to segment and label these parts.
We show that training our network solely with synthetic data and the proposed DA yields results competitive with models trained on real data.
arXiv Detail & Related papers (2021-10-06T16:31:20Z) - Automatic Polyp Segmentation via Multi-scale Subtraction Network [100.94922587360871]
In clinical practice, precise polyp segmentation provides important information in the early detection of colorectal cancer.
Most existing methods are based on U-shape structure and use element-wise addition or concatenation to fuse different level features progressively in decoder.
We propose a multi-scale subtraction network (MSNet) to segment polyp from colonoscopy image.
arXiv Detail & Related papers (2021-08-11T07:54:07Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
arXiv Detail & Related papers (2020-06-13T08:13:43Z) - Boundary-aware Context Neural Network for Medical Image Segmentation [15.585851505721433]
Medical image segmentation can provide reliable basis for further clinical analysis and disease diagnosis.
Most existing CNNs-based methods produce unsatisfactory segmentation mask without accurate object boundaries.
In this paper, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation.
arXiv Detail & Related papers (2020-05-03T02:35:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.