論文の概要: Multi-Modality Guidance Network For Missing Modality Inference
- arxiv url: http://arxiv.org/abs/2309.03452v1
- Date: Thu, 7 Sep 2023 02:26:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-08 14:29:48.625750
- Title: Multi-Modality Guidance Network For Missing Modality Inference
- Title(参考訳): モーダリティ推論の欠如に対するマルチモーダリティ誘導ネットワーク
- Authors: Zhuokai Zhao, Harish Palani, Tianyi Liu, Lena Evans and Ruth Toner
- Abstract要約: 本稿では,学習中の知識共有を促進する新しいガイダンスネットワークを提案し,マルチモーダル表現を活用して,より優れた単一モダリティモデルを推論のために訓練する。
暴力検出における実生活実験は、提案フレームワークが従来の訓練されたモデルよりもはるかに優れている単一モダリティモデルを訓練していることを示している。
- 参考スコア(独自算出の注目度): 7.43909951663486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal models have gained significant success in recent years. Standard
multimodal approaches often assume unchanged modalities from training stage to
inference stage. In practice, however, many scenarios fail to satisfy such
assumptions with missing modalities during inference, leading to limitations on
where multimodal models can be applied. While existing methods mitigate the
problem through reconstructing the missing modalities, it increases unnecessary
computational cost, which could be just as critical, especially for large,
deployed systems. To solve the problem from both sides, we propose a novel
guidance network that promotes knowledge sharing during training, taking
advantage of the multimodal representations to train better single-modality
models for inference. Real-life experiment in violence detection shows that our
proposed framework trains single-modality models that significantly outperform
its traditionally trained counterparts while maintaining the same inference
cost.
- Abstract(参考訳): 近年,マルチモーダルモデルが大きな成功を収めている。
標準的なマルチモーダルアプローチは、トレーニング段階から推論段階まで、常にモダリティを仮定することが多い。
しかし、実際には、多くのシナリオは推論中にモダリティの欠如によってそのような仮定を満たさないため、マルチモーダルモデルの適用範囲に制限が生じる。
既存の手法では、不足しているモダリティを再構築することで問題を緩和するが、不要な計算コストは増大する。
そこで本研究では,学習中の知識共有を促進させ,マルチモーダル表現を活用し,推論のための単一モダリティモデルの訓練を行う新しい指導ネットワークを提案する。
暴力検出における実生活実験により,提案フレームワークは,従来の訓練されたモデルよりもはるかに優れた単一モダリティモデルを訓練し,同一の推論コストを維持した。
関連論文リスト
- Cross-Modal Few-Shot Learning: a Generative Transfer Learning Framework [58.362064122489166]
本稿では,複数モーダルからインスタンスを識別するクロスモーダルなFew-Shot Learningタスクを提案する。
本稿では,1つの段階からなる生成的転帰学習フレームワークを提案する。1つは豊富な一助データに対する学習を伴い,もう1つは新しいデータに適応するための転帰学習に焦点を当てる。
以上の結果から,GTLは4つの異なるマルチモーダルデータセット間の最先端手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-14T16:09:38Z) - A Practitioner's Guide to Continual Multimodal Pretraining [83.63894495064855]
マルチモーダル・ファンデーション・モデルは視覚と言語を交わす多くのアプリケーションに役立っている。
モデルを更新し続けるために、継続事前トレーニングの研究は主に、大規模な新しいデータに対する頻度の低い、差別的な更新、あるいは頻繁に行われるサンプルレベルの更新のシナリオを探求する。
本稿では,FoMo-in-Flux(FoMo-in-Flux)について紹介する。
論文 参考訳(メタデータ) (2024-08-26T17:59:01Z) - Missing Modality Prediction for Unpaired Multimodal Learning via Joint Embedding of Unimodal Models [6.610033827647869]
実世界のシナリオでは、完全なマルチモーダルデータを一貫して取得することは重大な課題である。
これはしばしば、特定のモダリティのデータが欠落しているモダリティの問題につながる。
自己教師型共同埋め込み学習手法を用いて, パラメータ効率のよい未学習モデルの微調整を行う新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-17T14:44:25Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
MLA(Multimodal Learning with Alternating Unimodal Adaptation)を提案する。
MLAは、それを交互に一助学習プロセスに変換することで、従来の共同マルチモーダル学習プロセスを再構築する。
共有ヘッドを通じてモーダル間相互作用をキャプチャし、異なるモーダル間で連続的な最適化を行う。
実験は5つの多様なデータセットで行われ、完全なモダリティを持つシナリオと、欠落したモダリティを持つシナリオを含む。
論文 参考訳(メタデータ) (2023-11-17T18:57:40Z) - Learning Unseen Modality Interaction [54.23533023883659]
マルチモーダル学習は、すべてのモダリティの組み合わせが訓練中に利用でき、クロスモーダル対応を学ぶことを前提としている。
我々は、目に見えないモダリティ相互作用の問題を提起し、第1の解を導入する。
異なるモジュラリティの多次元的特徴を、豊富な情報を保存した共通空間に投影するモジュールを利用する。
論文 参考訳(メタデータ) (2023-06-22T10:53:10Z) - Revisiting Modality Imbalance In Multimodal Pedestrian Detection [6.7841188753203046]
本稿では,マルチモーダルアーキテクチャにおける正規化器を用いた新しいトレーニング構成を導入し,モーダル間の相違を解消する。
具体的には,2つの特徴抽出器を訓練中に同等に重要視することにより,特徴融合法をより堅牢にすることを支援する。
論文 参考訳(メタデータ) (2023-02-24T11:56:57Z) - Adaptive Contrastive Learning on Multimodal Transformer for Review
Helpfulness Predictions [40.70793282367128]
本稿では,MRHP(Multimodal Review Helpfulness Prediction)問題に対するマルチモーダルコントラスト学習を提案する。
さらに,コントラスト学習における適応重み付け方式を提案する。
最後に,マルチモーダルデータの不整合性に対処するマルチモーダルインタラクションモジュールを提案する。
論文 参考訳(メタデータ) (2022-11-07T13:05:56Z) - Modality Competition: What Makes Joint Training of Multi-modal Network
Fail in Deep Learning? (Provably) [75.38159612828362]
最高のユニモーダルネットワークは、共同で訓練されたマルチモーダルネットワークよりも優れていることが観察されている。
この研究は、ニューラルネットワークにおけるそのようなパフォーマンスギャップの出現に関する理論的な説明を提供する。
論文 参考訳(メタデータ) (2022-03-23T06:21:53Z) - Hybrid Contrastive Learning of Tri-Modal Representation for Multimodal
Sentiment Analysis [18.4364234071951]
我々は,三モーダル表現のハイブリッドコントラスト学習のための新しいフレームワークHyConを提案する。
具体的には,モーダル内・モーダル内コントラスト学習と半コントラスト学習を同時に行う。
提案手法は既存の作業より優れている。
論文 参考訳(メタデータ) (2021-09-04T06:04:21Z) - Robust Latent Representations via Cross-Modal Translation and Alignment [36.67937514793215]
ほとんどのマルチモーダル機械学習手法では、トレーニングに使用されるすべてのモダリティをテストに利用する必要がある。
この制限に対処するため、トレーニング中のみに複数のモーダルを用いてユニモーダルシステムのテスト性能を向上させることを目的としている。
提案するマルチモーダルトレーニングフレームワークは、クロスモーダル変換と相関に基づく潜在空間アライメントを用いる。
論文 参考訳(メタデータ) (2020-11-03T11:18:04Z) - Relating by Contrasting: A Data-efficient Framework for Multimodal
Generative Models [86.9292779620645]
生成モデル学習のための対照的なフレームワークを開発し、モダリティ間の共通性だけでなく、「関連」と「関連しない」マルチモーダルデータの区別によってモデルを訓練することができる。
提案手法では, 生成モデルを用いて, 関係のないサンプルから関連サンプルを正確に識別し, ラベルのない多モードデータの利用が可能となる。
論文 参考訳(メタデータ) (2020-07-02T15:08:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。