Multimodal Guidance Network for Missing-Modality Inference in Content Moderation
- URL: http://arxiv.org/abs/2309.03452v2
- Date: Fri, 2 Aug 2024 01:33:25 GMT
- Title: Multimodal Guidance Network for Missing-Modality Inference in Content Moderation
- Authors: Zhuokai Zhao, Harish Palani, Tianyi Liu, Lena Evans, Ruth Toner,
- Abstract summary: We propose a novel guidance network that promotes knowledge sharing during training.
We show that our proposed framework trains single-modality models that significantly outperform traditionally trained counterparts.
- Score: 6.933986643759809
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal deep learning, especially vision-language models, have gained significant traction in recent years, greatly improving performance on many downstream tasks, including content moderation and violence detection. However, standard multimodal approaches often assume consistent modalities between training and inference, limiting applications in many real-world use cases, as some modalities may not be available during inference. While existing research mitigates this problem through reconstructing the missing modalities, they unavoidably increase unnecessary computational cost, which could be just as critical, especially for large, deployed infrastructures in industry. To this end, we propose a novel guidance network that promotes knowledge sharing during training, taking advantage of the multimodal representations to train better single-modality models to be used for inference. Real-world experiments in violence detection shows that our proposed framework trains single-modality models that significantly outperform traditionally trained counterparts, while avoiding increases in computational cost for inference.
Related papers
- Cross-Modal Few-Shot Learning: a Generative Transfer Learning Framework [58.362064122489166]
This paper introduces the Cross-modal Few-Shot Learning task, which aims to recognize instances from multiple modalities when only a few labeled examples are available.
We propose a Generative Transfer Learning framework consisting of two stages: the first involves training on abundant unimodal data, and the second focuses on transfer learning to adapt to novel data.
Our finds demonstrate that GTL has superior performance compared to state-of-the-art methods across four distinct multi-modal datasets.
arXiv Detail & Related papers (2024-10-14T16:09:38Z) - A Practitioner's Guide to Continual Multimodal Pretraining [83.63894495064855]
Multimodal foundation models serve numerous applications at the intersection of vision and language.
To keep models updated, research into continual pretraining mainly explores scenarios with either infrequent, indiscriminate updates on large-scale new data, or frequent, sample-level updates.
We introduce FoMo-in-Flux, a continual multimodal pretraining benchmark with realistic compute constraints and practical deployment requirements.
arXiv Detail & Related papers (2024-08-26T17:59:01Z) - Missing Modality Prediction for Unpaired Multimodal Learning via Joint Embedding of Unimodal Models [6.610033827647869]
In real-world scenarios, consistently acquiring complete multimodal data presents significant challenges.
This often leads to the issue of missing modalities, where data for certain modalities are absent.
We propose a novel framework integrating parameter-efficient fine-tuning of unimodal pretrained models with a self-supervised joint-embedding learning method.
arXiv Detail & Related papers (2024-07-17T14:44:25Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
We propose MLA (Multimodal Learning with Alternating Unimodal Adaptation) to overcome challenges where some modalities appear more dominant than others during multimodal learning.
MLA reframes the conventional joint multimodal learning process by transforming it into an alternating unimodal learning process.
It captures cross-modal interactions through a shared head, which undergoes continuous optimization across different modalities.
Experiments are conducted on five diverse datasets, encompassing scenarios with complete modalities and scenarios with missing modalities.
arXiv Detail & Related papers (2023-11-17T18:57:40Z) - Learning Unseen Modality Interaction [54.23533023883659]
Multimodal learning assumes all modality combinations of interest are available during training to learn cross-modal correspondences.
We pose the problem of unseen modality interaction and introduce a first solution.
It exploits a module that projects the multidimensional features of different modalities into a common space with rich information preserved.
arXiv Detail & Related papers (2023-06-22T10:53:10Z) - Revisiting Modality Imbalance In Multimodal Pedestrian Detection [6.7841188753203046]
We introduce a novel training setup with regularizer in the multimodal architecture to resolve the problem of this disparity between the modalities.
Specifically, our regularizer term helps to make the feature fusion method more robust by considering both the feature extractors equivalently important during the training.
arXiv Detail & Related papers (2023-02-24T11:56:57Z) - Adaptive Contrastive Learning on Multimodal Transformer for Review
Helpfulness Predictions [40.70793282367128]
We propose Multimodal Contrastive Learning for Multimodal Review Helpfulness Prediction (MRHP) problem.
In addition, we introduce Adaptive Weighting scheme for our contrastive learning approach.
Finally, we propose Multimodal Interaction module to address the unalignment nature of multimodal data.
arXiv Detail & Related papers (2022-11-07T13:05:56Z) - Modality Competition: What Makes Joint Training of Multi-modal Network
Fail in Deep Learning? (Provably) [75.38159612828362]
It has been observed that the best uni-modal network outperforms the jointly trained multi-modal network.
This work provides a theoretical explanation for the emergence of such performance gap in neural networks for the prevalent joint training framework.
arXiv Detail & Related papers (2022-03-23T06:21:53Z) - Hybrid Contrastive Learning of Tri-Modal Representation for Multimodal
Sentiment Analysis [18.4364234071951]
We propose a novel framework HyCon for hybrid contrastive learning of tri-modal representation.
Specifically, we simultaneously perform intra-/inter-modal contrastive learning and semi-contrastive learning.
Our proposed method outperforms existing works.
arXiv Detail & Related papers (2021-09-04T06:04:21Z) - Robust Latent Representations via Cross-Modal Translation and Alignment [36.67937514793215]
Most multi-modal machine learning methods require that all the modalities used for training are also available for testing.
To address this limitation, we aim to improve the testing performance of uni-modal systems using multiple modalities during training only.
The proposed multi-modal training framework uses cross-modal translation and correlation-based latent space alignment.
arXiv Detail & Related papers (2020-11-03T11:18:04Z) - Relating by Contrasting: A Data-efficient Framework for Multimodal
Generative Models [86.9292779620645]
We develop a contrastive framework for generative model learning, allowing us to train the model not just by the commonality between modalities, but by the distinction between "related" and "unrelated" multimodal data.
Under our proposed framework, the generative model can accurately identify related samples from unrelated ones, making it possible to make use of the plentiful unlabeled, unpaired multimodal data.
arXiv Detail & Related papers (2020-07-02T15:08:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.