Quantum Nonlinear Effect in Dissipatively Coupled Optomechanical System
- URL: http://arxiv.org/abs/2309.03719v2
- Date: Thu, 19 Oct 2023 08:19:38 GMT
- Title: Quantum Nonlinear Effect in Dissipatively Coupled Optomechanical System
- Authors: Wen-Quan Yang, Wei Niu, Yong-Hong Ma, and Wen-Zhao Zhang
- Abstract summary: A full-quantum approach is used to study quantum nonlinear properties of a compound Michelson-Sagnac interferometer optomechanical system.
- Score: 2.662935297203738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A full-quantum approach is used to study quantum nonlinear properties of a
compound Michelson-Sagnac interferometer optomechanical system. The effective
Hamiltonian shows that both dissipative and dispersive couplings possess
imaginary- and real-Kerr nonlinearities. And unexpectedly, the nonlinearities
caused by the dissipative coupling have non-Hermitian Hamiltonian-like
properties. It can protect the quantum nature of the dispersive coupling beyond
the traditional dissipation of the system. This protection mechanism allows the
system to exhibit strong quantum nonlinear effects in the parameter region of
the hyperbolic function $J^2 = \Delta_c \Delta_e$. Moreover, we can obtain
strong anti-bunching effects whether in strong or weak coupling regimes with
the help of the dispersive and dissipative couplings jointly. It may provide a
new perspective to experimentally realize and study the strong quantum
nonlinear effects.
Related papers
- Suppression of quantum dissipation: A cooperative effect of quantum squeezing and quantum measurement [22.051290654737976]
We propose a scheme for beating environment-induced dissipation in an open two-level system coupled to a parametrically driven cavity.
We demonstrate that, in the presence of the cooperation, the system dynamics can be completely dominated by the effective system-cavity interaction.
This work provides a generic method of dissipation suppression in a variety of quantum mechanical platforms, including natural atoms and superconducting circuits.
arXiv Detail & Related papers (2024-07-12T15:10:44Z) - Effective Hamiltonian theory of open quantum systems at strong coupling [0.0]
We present the reaction-coordinate polaron-transform (RCPT) framework for generating effective Hamiltonian models.
Examples in this work include canonical models for quantum thermalization, charge and energy transport at the nanoscale, performance bounds of quantum thermodynamical machines.
arXiv Detail & Related papers (2022-11-10T17:10:33Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - The universal model of strong coupling at the nonlinear parametric
resonance in open cavity-QED systems [0.0]
We show that molecular, quantum-dot, and optomechanical nanocavity-QED systems can be described by a universal model.
We find analytic solutions for quantum states in the rotating wave approximation.
We show how the strong coupling at the nonlinear resonance modifies photon emission and vibrational spectra.
arXiv Detail & Related papers (2021-12-22T01:16:24Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Strong Coupling Optomechanics Mediated by a Qubit in the Dispersive
Regime [0.0]
dispersive, radiation-pressure interaction between the mechanical and the electromagnetic modes is typically very weak.
We show that if the interaction is mediated by a Josephson circuit, one can have an effective dynamic corresponding to a huge enhancement of the single-photon optomechanical coupling.
arXiv Detail & Related papers (2021-07-29T20:24:20Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Exponentially-enhanced quantum sensing with non-Hermitian lattice
dynamics [77.34726150561087]
We show that certain asymmetric non-Hermitian tight-binding models with a $mathbbZ$ symmetry yield a pronounced sensing advantage.
Our setup is directly compatible with a variety of quantum optical and superconducting circuit platforms.
arXiv Detail & Related papers (2020-04-01T17:14:14Z) - Nonequilibrium Nonlinear Open Quantum Systems I. Functional Perturbative
Analysis of a Weakly Anharmonic Oscillator [0.0]
We introduce a functional perturbative method for treating weakly nonlinear systems coupled with a quantum field bath.
We identify a fluctuation-dissipation relation based on the nonequilibrium dynamics of this nonlinear open quantum system.
The results presented here are useful for studying the nonequilibrium physical processes of nonlinear quantum systems such as heat transfer or electron transport.
arXiv Detail & Related papers (2019-12-30T03:50:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.