論文の概要: Inferring physical laws by artificial intelligence based causal models
- arxiv url: http://arxiv.org/abs/2309.04069v1
- Date: Fri, 8 Sep 2023 01:50:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-11 16:25:04.371896
- Title: Inferring physical laws by artificial intelligence based causal models
- Title(参考訳): 人工知能に基づく因果モデルによる物理法則の推定
- Authors: Jorawar Singh and Kishor Bharti and Arvind
- Abstract要約: 本稿では,相関関係を認識し,カジュアルな関係をもたらす物理原理の因果学習モデルを提案する。
本手法は,データ間の関係を把握できるだけでなく,変数間の因果関係を正しく把握できることを示す。
- 参考スコア(独自算出の注目度): 3.333770856102642
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advances in Artificial Intelligence (AI) and Machine Learning (ML) have
opened up many avenues for scientific research, and are adding new dimensions
to the process of knowledge creation. However, even the most powerful and
versatile of ML applications till date are primarily in the domain of analysis
of associations and boil down to complex data fitting. Judea Pearl has pointed
out that Artificial General Intelligence must involve interventions involving
the acts of doing and imagining. Any machine assisted scientific discovery thus
must include casual analysis and interventions. In this context, we propose a
causal learning model of physical principles, which not only recognizes
correlations but also brings out casual relationships. We use the principles of
causal inference and interventions to study the cause-and-effect relationships
in the context of some well-known physical phenomena. We show that this
technique can not only figure out associations among data, but is also able to
correctly ascertain the cause-and-effect relations amongst the variables,
thereby strengthening (or weakening) our confidence in the proposed model of
the underlying physical process.
- Abstract(参考訳): 人工知能(AI)と機械学習(ML)の進歩は、科学研究のための多くの道を開き、知識創造のプロセスに新たな次元を追加している。
しかし、これまでで最も強力で汎用的なMLアプリケーションでさえも、主に関連の分析の領域にあり、複雑なデータフィッティングに沸騰する。
ジュデア・パールは、人工知能は行動や想像に関わる介入を伴わなければならないと指摘している。
したがって、あらゆる機械による科学的発見は、カジュアルな分析と介入を含む必要がある。
そこで本研究では,相関を認識できるだけでなく,カジュアルな関係をも生み出す物理原理の因果学習モデルを提案する。
我々は因果推論と介入の原理を用いて、よく知られた物理現象の文脈における因果関係を研究する。
この手法は,データ間の関連性を解明するだけでなく,変数間の因果関係を正確に確認し,基礎となる物理プロセスのモデルに対する信頼度を高める(あるいは弱める)ことができることを示す。
関連論文リスト
- Position: Stop Making Unscientific AGI Performance Claims [6.343515088115924]
人工知能(AI)分野の発展は、人工知能(AGI)の「スパーク」を観察するための「完璧な嵐」を生み出した。
我々は、モデルの潜在空間における有意義なパターンの発見は、AGIを支持する証拠とは見なされないことを議論し、実証的に実証した。
我々は、モデル表現と興味のある変数の間の相関が、モデルが根底にある「真実」の関係について理解していることから「原因」であるとの誤解に対して、AIの方法論的設定と一般的な公開イメージの両方が理想的であると結論付けている。
論文 参考訳(メタデータ) (2024-02-06T12:42:21Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - Causal reasoning in typical computer vision tasks [11.95181390654463]
因果理論は、データバイアスの影響を受けない本質的な因果構造をモデル化し、突発的な相関を避けるのに有効である。
本稿では,一般的な視覚・視覚言語タスクにおける既存の因果的手法(セグメンテーション,オブジェクト検出,画像キャプションなど)を包括的にレビューすることを目的とする。
今後のロードマップも提案され、因果論の開発と他の複雑なシーンやシステムへの応用が促進される。
論文 参考訳(メタデータ) (2023-07-26T07:01:57Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
我々はマルコフモデルとセミマルコフモデルの急激な変分を分解するツールを開発する。
突発効果の非パラメトリック分解を可能にする最初の結果を証明する。
説明可能なAIや公平なAIから、疫学や医学における疑問まで、いくつかの応用がある。
論文 参考訳(メタデータ) (2023-06-08T09:40:28Z) - Balancing Explainability-Accuracy of Complex Models [8.402048778245165]
我々は,コリレーションの影響に基づき,複雑なモデルに対する新しいアプローチを提案する。
独立機能と依存機能の両方のシナリオに対するアプローチを提案する。
従属特徴に対する提案手法の複雑さの上限を提供する。
論文 参考訳(メタデータ) (2023-05-23T14:20:38Z) - A Causal Research Pipeline and Tutorial for Psychologists and Social
Scientists [7.106986689736828]
因果関係は世界を理解する科学的努力の基本的な部分である。
残念なことに、因果関係は心理学や社会科学の多くの分野においていまだに曖昧である。
研究に因果的アプローチを採用することの重要性に対する多くの勧告によって、我々は、必然的に因果的理論を研究パイプラインの他の部分と調和させるために、心理学における研究の典型的なアプローチを再構築する。
論文 参考訳(メタデータ) (2022-06-10T15:11:57Z) - AI Research Associate for Early-Stage Scientific Discovery [1.6861004263551447]
人工知能(AI)は科学活動に何十年も使われ続けている。
我々は、最小バイアスの物理に基づくモデリングに基づく、初期段階の科学的発見のためのAI研究アソシエイトを提案する。
論文 参考訳(メタデータ) (2022-02-02T17:05:52Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
AIと因果関係の中心的な目標は、抽象表現と因果構造を共同で発見することである。
因果誘導を研究するための既存の環境は、複雑なタスク固有の因果グラフを持つため、この目的には適していない。
本研究の目的は,高次変数の学習表現と因果構造の研究を促進することである。
論文 参考訳(メタデータ) (2021-07-02T05:44:56Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
因果誘導における現在の視覚システムの系統的評価のための抽象因果分析データセットについて紹介する。
Blicket実験における因果発見の研究の流れに触発され、独立シナリオと介入シナリオのいずれにおいても、以下の4種類の質問で視覚的推論システムに問い合わせる。
純粋なニューラルモデルは確率レベルのパフォーマンスの下で連想戦略に向かう傾向があるのに対し、ニューロシンボリックな組み合わせは後方ブロッキングの推論に苦しむ。
論文 参考訳(メタデータ) (2021-03-26T02:42:38Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
本稿では,データ駆動型アプローチと知識駆動型アプローチの強みを組み合わせたフレームワークとして,ハイブリッドAI手法を提案する。
具体的には、知識ベースを用いて深層ニューラルネットワークの学習過程を導く方法として、ニューロシンボリズムの概念を継承する。
論文 参考訳(メタデータ) (2020-03-09T15:04:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。