論文の概要: Computationally Efficient Data-Driven Discovery and Linear
Representation of Nonlinear Systems For Control
- arxiv url: http://arxiv.org/abs/2309.04074v1
- Date: Fri, 8 Sep 2023 02:19:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-11 16:26:02.401481
- Title: Computationally Efficient Data-Driven Discovery and Linear
Representation of Nonlinear Systems For Control
- Title(参考訳): 非線形システムの制御のための効率的なデータ駆動探索と線形表現
- Authors: Madhur Tiwari, George Nehma, Bethany Lusch
- Abstract要約: この研究は、制御のための非線形システムのシステム同定と線形化のためのクープマン作用素理論を用いたデータ駆動型フレームワークの開発に焦点をあてる。
提案手法は, オートエンコーダのベースラインよりも効率よく, 精度が高いことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work focuses on developing a data-driven framework using Koopman
operator theory for system identification and linearization of nonlinear
systems for control. Our proposed method presents a deep learning framework
with recursive learning. The resulting linear system is controlled using a
linear quadratic control. An illustrative example using a pendulum system is
presented with simulations on noisy data. We show that our proposed method is
trained more efficiently and is more accurate than an autoencoder baseline.
- Abstract(参考訳): 本研究は非線形システムのシステム同定と線形化にkoopman演算子理論を用いたデータ駆動フレームワークの開発に焦点をあてる。
提案手法は再帰学習を伴う深層学習フレームワークを提案する。
結果の線形系は線形二次制御により制御される。
振り子システムを用いた実例を雑音データに関するシミュレーションで示す。
提案手法はオートエンコーダベースラインよりも効率的に学習でき,精度が高いことを示す。
関連論文リスト
- Identification For Control Based on Neural Networks: Approximately Linearizable Models [42.15267357325546]
本研究では,非線形システムの効率的な制御設計と安定性解析のための制御指向同定手法を提案する。
ニューラルネットワークは離散時間非線形状態空間モデルを特定し、時間領域の入力出力挙動を近似する。
ネットワークは、同定されたモデルがフィードバックによってほぼ線形化可能であるように構成され、制御則が学習段階から自明に従うことを保証する。
論文 参考訳(メタデータ) (2024-09-24T08:31:22Z) - In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States [84.24300005271185]
本稿では,任意の参照ポリシーをラップした制御フィルタを提案する。
本手法は、トップダウンとエゴセントリックの両方のビュー設定を含むシミュレーション環境における2つの異なるビズモータ制御タスクに有効である。
論文 参考訳(メタデータ) (2023-01-27T22:28:19Z) - Deep Koopman Operator with Control for Nonlinear Systems [44.472875714432504]
そこで我々は,Koopman組込み関数とKoopman Operatorを学習するためのエンドツーエンドのディープラーニングフレームワークを提案する。
まず、ニューラルネットワークを用いて埋め込み関数とクープマン演算子をパラメータ化し、Kステップ損失関数でエンドツーエンドに学習する。
次に,制御入力の非線形性をモデル化するために,非線形状態依存制御項を符号化する補助制御ネットワークを設計する。
論文 参考訳(メタデータ) (2022-02-16T11:40:36Z) - Recurrent Neural Network Training with Convex Loss and Regularization
Functions by Extended Kalman Filtering [0.20305676256390928]
本研究では,非線形システム同定ベンチマークにおいて,学習手法が勾配勾配よりも優れていることを示す。
また、データ駆動非線形モデル予測制御におけるアルゴリズムの利用と、オフセットフリートラッキングにおける外乱モデルとの関係についても検討する。
論文 参考訳(メタデータ) (2021-11-04T07:49:15Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Non-Episodic Learning for Online LQR of Unknown Linear Gaussian System [0.0]
単一の軌道からシステムに関する知識を得るオンライン非分離アルゴリズムを提案する。
識別と制御のほぼ確実に収束する割合を特徴付け、探索と搾取の間の最適なトレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-03-24T15:51:28Z) - Average Cost Optimal Control of Stochastic Systems Using Reinforcement
Learning [0.19036571490366497]
本稿では,Q関数のカーネル行列を推定するオンライン学習手法を提案する。
得られた制御ゲインとカーネルマトリックスは最適に収束することが証明された。
論文 参考訳(メタデータ) (2020-10-13T08:51:06Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
状態遷移が既知の状態-作用対の特徴埋め込みに線形に依存する非線形力学系のクラスについて検討する。
そこで本稿では, トラジェクティブ・プランニング, トラジェクティブ・トラッキング, システムの再推定という3つのステップを繰り返すことで, この問題を解決するためのアクティブ・ラーニング・アプローチを提案する。
本手法は, 非線形力学系を標準線形回帰の統計速度と同様, パラメトリック速度で推定する。
論文 参考訳(メタデータ) (2020-06-18T04:54:11Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
本稿では,トレーニングデータの密度と制御性能の関係を考察する。
データセットの品質尺度を定式化し、$rho$-gap と呼ぶ。
フィードバック線形化制御法に$rho$-gapを適用する方法を示す。
論文 参考訳(メタデータ) (2020-05-25T12:13:49Z) - Data-Driven Factor Graphs for Deep Symbol Detection [107.63351413549992]
本稿では,因子グラフ法をデータ駆動方式で実装することを提案する。
特に,機械学習(ML)ツールを用いて因子グラフの学習を提案する。
我々は,BCJRNetと呼ばれる提案システムにおいて,BCJRアルゴリズムを小さなトレーニングセットから実装することを実証した。
論文 参考訳(メタデータ) (2020-01-31T09:23:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。