論文の概要: Grouping Boundary Proposals for Fast Interactive Image Segmentation
- arxiv url: http://arxiv.org/abs/2309.04169v1
- Date: Fri, 8 Sep 2023 07:22:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-11 15:43:40.465508
- Title: Grouping Boundary Proposals for Fast Interactive Image Segmentation
- Title(参考訳): 高速インタラクティブ画像分割のためのグループ境界の提案
- Authors: Li Liu and Da Chen and Minglei Shu and Laurent D. Cohen
- Abstract要約: 最小測地フレームワークに基づく新しい画像分割モデルを提案する。
適応的カットベース循環最適経路スキームとグラフベース境界提案グループスキームを用いる。
実験結果から,提案手法は,最先端の最小経路に基づく画像分割手法よりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 19.337758803223917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Geodesic models are known as an efficient tool for solving various image
segmentation problems. Most of existing approaches only exploit local pointwise
image features to track geodesic paths for delineating the objective
boundaries. However, such a segmentation strategy cannot take into account the
connectivity of the image edge features, increasing the risk of shortcut
problem, especially in the case of complicated scenario. In this work, we
introduce a new image segmentation model based on the minimal geodesic
framework in conjunction with an adaptive cut-based circular optimal path
computation scheme and a graph-based boundary proposals grouping scheme.
Specifically, the adaptive cut can disconnect the image domain such that the
target contours are imposed to pass through this cut only once. The boundary
proposals are comprised of precomputed image edge segments, providing the
connectivity information for our segmentation model. These boundary proposals
are then incorporated into the proposed image segmentation model, such that the
target segmentation contours are made up of a set of selected boundary
proposals and the corresponding geodesic paths linking them. Experimental
results show that the proposed model indeed outperforms state-of-the-art
minimal paths-based image segmentation approaches.
- Abstract(参考訳): ジオデシックモデルは、様々な画像セグメンテーション問題を解決するための効率的なツールとして知られている。
既存のアプローチのほとんどは、対象の境界を規定する測地線経路を追跡するためにのみ、局所的な画像特徴を利用する。
しかし、このようなセグメンテーション戦略は、画像エッジ機能の接続性を考慮することはできず、特に複雑なシナリオの場合、ショートカット問題のリスクを増大させる。
本研究では,最小測地線フレームワークに基づく新しい画像分割モデルと,適応型カット型円形最適経路計算スキームとグラフに基づく境界提案グルーピングスキームを提案する。
具体的には、アダプティブカットは、対象の輪郭がこのカットを1回だけ通過するように、画像領域を切断することができる。
境界提案は予め計算された画像エッジセグメントで構成され、セグメンテーションモデルの接続情報を提供する。
これらの境界提案は、次に提案された画像分割モデルに組み込まれ、ターゲットセグメンテーションの輪郭は、選択された一連の境界提案とそれらを結ぶ対応する測地路からなる。
実験の結果,提案手法は最先端の最小経路に基づく画像分割手法よりも優れていることがわかった。
関連論文リスト
- QIS : Interactive Segmentation via Quasi-Conformal Mappings [3.096214093393036]
ユーザ入力を正と負のクリックという形で組み込んだ準コンフォルマルな対話型セグメンテーション(QIS)モデルを提案する。
本稿では,QISが関心領域を含ませたり排除したりする能力の理論的支援を含む,提案モデルの徹底的な分析を行う。
論文 参考訳(メタデータ) (2024-02-22T16:49:58Z) - Temporal Segment Transformer for Action Segmentation [54.25103250496069]
本稿では,テキスト・セグメント・トランスフォーマ (textittemporal segment transformer) と呼ぶアテンション・ベース・アプローチを提案する。
主な考え方は、セグメントとフレームの間の注意を用いてセグメント表現を識別することであり、またセグメント間の時間的相関を捉えるためにセグメント間注意を用いる。
このアーキテクチャは,50Salads,GTEA,Breakfastのベンチマークにおいて,最先端の精度を実現していることを示す。
論文 参考訳(メタデータ) (2023-02-25T13:05:57Z) - BoundarySqueeze: Image Segmentation as Boundary Squeezing [104.43159799559464]
本研究では,オブジェクトとシーンの微細な高画質画像分割のための新しい手法を提案する。
形態素画像処理技術による拡張と浸食に着想を得て,画素レベルのセグメンテーション問題をスクイーズ対象境界として扱う。
提案手法は,COCO,Cityscapesのインスタンス・セグメンテーション・セグメンテーション・セグメンテーションにおいて大きく向上し,同一条件下での精度・速度ともに従来のPointRendよりも優れていた。
論文 参考訳(メタデータ) (2021-05-25T04:58:51Z) - SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive
Background Prototypes [56.387647750094466]
Few-shot セマンティックセマンティックセマンティクスは,クエリイメージ内の新規クラスオブジェクトを,アノテーション付きの例で分割することを目的としている。
先進的なソリューションのほとんどは、各ピクセルを学習した前景のプロトタイプに合わせることでセグメンテーションを行うメトリクス学習フレームワークを利用している。
このフレームワークは、前景プロトタイプのみとのサンプルペアの不完全な構築のために偏った分類に苦しんでいます。
論文 参考訳(メタデータ) (2021-04-19T11:21:47Z) - Active Boundary Loss for Semantic Segmentation [58.72057610093194]
本稿では,セマンティックセグメンテーションのための新しいアクティブ境界損失を提案する。
エンド・ツー・エンドのトレーニングにおいて、予測境界とグランド・トゥルース・バウンダリのアライメントを徐々に促進することができる。
実験結果から, アクティブ境界損失によるトレーニングは, 境界Fスコアと平均インターセクションオーバ・ユニオンを効果的に改善できることが示された。
論文 参考訳(メタデータ) (2021-02-04T15:47:54Z) - Nonparametric clustering for image segmentation [0.0]
画像分割への非パラメトリッククラスタリングの適用について検討し,このタスクに特有のアルゴリズムを提供する。
ピクセル類似性は、色表現の密度の観点から評価され、ピクセルの隣接構造が悪用される。
提案手法は、画像の分割と境界の検出の両方に作用し、しきい値化手法のクラスのカラー画像への一般化と見なすことができる。
論文 参考訳(メタデータ) (2021-01-20T22:27:44Z) - Pixel-Level Cycle Association: A New Perspective for Domain Adaptive
Semantic Segmentation [169.82760468633236]
本稿では,ソースとターゲットの画素ペア間の画素レベルサイクルの関連性を構築することを提案する。
我々の手法は1段階のエンドツーエンドで訓練でき、追加のパラメータは導入しない。
論文 参考訳(メタデータ) (2020-10-31T00:11:36Z) - Geodesic Paths for Image Segmentation with Implicit Region-based
Homogeneity Enhancement [19.309722425910465]
アイコナル偏微分方程式(PDE)に基づくフレキシブル・インタラクティブな画像分割モデルを提案する。
提案手法は,最先端の最小経路に基づく画像分割手法よりも優れている。
論文 参考訳(メタデータ) (2020-08-16T13:29:11Z) - Improving Semantic Segmentation via Decoupled Body and Edge Supervision [89.57847958016981]
既存のセグメンテーションアプローチは、グローバルコンテキストをモデル化することでオブジェクトの内部の一貫性を改善すること、あるいはマルチスケールの特徴融合によって境界に沿ったオブジェクトの詳細を洗練することを目的としている。
本稿では,セマンティックセグメンテーションのための新しいパラダイムを提案する。
我々の洞察は、セマンティックセグメンテーションの魅力ある性能には、画像の高頻度と低頻度に対応するオブジェクトのテキストボディとテキストエッジを具体的にモデル化する必要があるということである。
さまざまなベースラインやバックボーンネットワークを備えた提案したフレームワークが,オブジェクト内部の一貫性とオブジェクト境界を向上させることを示す。
論文 参考訳(メタデータ) (2020-07-20T12:11:22Z) - A Region-based Randers Geodesic Approach for Image Segmentation [16.091797508701045]
最小測地線経路の枠組みに基づく新しい変分画像分割モデルを提案する。
また,幾つもの測地線経路の連結により,対象境界線をデライン化できる,実用的なインタラクティブな画像分割戦略を提案する。
論文 参考訳(メタデータ) (2019-12-20T22:17:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。