論文の概要: Leveraging Model Fusion for Improved License Plate Recognition
- arxiv url: http://arxiv.org/abs/2309.04331v2
- Date: Tue, 5 Dec 2023 12:50:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-06 19:30:35.114846
- Title: Leveraging Model Fusion for Improved License Plate Recognition
- Title(参考訳): ライセンスプレート認識改善のためのモデル融合の活用
- Authors: Rayson Laroca, Luiz A. Zanlorensi, Valter Estevam, Rodrigo Minetto,
David Menotti
- Abstract要約: 複数のモデルを使用すると、特定のデータセット/シナリオのサブパーパフォーマンスが低下する。
実験には幅広いデータセットが含まれており、イントラおよびクロスデータセットのセットアップにおいて、融合アプローチの実質的な利点が明らかにされている。
認識タスクが余分な時間で許容できるアプリケーションの場合、効果的な戦略は4-6モデルを組み合わせることである。
- 参考スコア(独自算出の注目度): 3.049664973023939
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: License Plate Recognition (LPR) plays a critical role in various
applications, such as toll collection, parking management, and traffic law
enforcement. Although LPR has witnessed significant advancements through the
development of deep learning, there has been a noticeable lack of studies
exploring the potential improvements in results by fusing the outputs from
multiple recognition models. This research aims to fill this gap by
investigating the combination of up to 12 different models using
straightforward approaches, such as selecting the most confident prediction or
employing majority vote-based strategies. Our experiments encompass a wide
range of datasets, revealing substantial benefits of fusion approaches in both
intra- and cross-dataset setups. Essentially, fusing multiple models reduces
considerably the likelihood of obtaining subpar performance on a particular
dataset/scenario. We also found that combining models based on their speed is
an appealing approach. Specifically, for applications where the recognition
task can tolerate some additional time, though not excessively, an effective
strategy is to combine 4-6 models. These models may not be the most accurate
individually, but their fusion strikes an optimal balance between speed and
accuracy.
- Abstract(参考訳): ライセンスプレート認識(LPR)は、料金徴収、駐車管理、交通法執行など、様々な用途において重要な役割を果たしている。
LPRは深層学習の発展を通じて大きな進歩を遂げてきたが、複数の認識モデルからの出力を融合させることにより、結果の改善の可能性を探究する研究は目立ったものがない。
本研究の目的は,最大12種類のモデルの組み合わせを,最も確実な予測の選択や多数決ベースの戦略の導入など,簡単なアプローチで調査することで,このギャップを埋めることである。
我々の実験は幅広いデータセットを包含し、イントラデータセットとクロスデータセットの両方で融合アプローチの実質的な利点を明らかにした。
本質的には、複数のモデルを使用することで、特定のデータセット/scenario上でsubparパフォーマンスを得る可能性を大幅に低減できる。
また、スピードに基づいたモデルの組み合わせは魅力的なアプローチであることも分かりました。
具体的には、認識タスクが余分な時間を許容できるアプリケーションに対して、4-6モデルを組み合わせることが効果的な戦略である。
これらのモデルが最も正確ではないかもしれないが、それらの融合は速度と精度の最適なバランスをとる。
関連論文リスト
- Data curation via joint example selection further accelerates multimodal learning [3.329535792151987]
サンプルを個別に選択するよりも,データのバッチを共同で選択することが学習に有効であることを示す。
このようなバッチを選択するための単純かつトラクタブルなアルゴリズムを導出し、個別に優先順位付けされたデータポイントを超えてトレーニングを著しく加速する。
論文 参考訳(メタデータ) (2024-06-25T16:52:37Z) - Fine-Tuning or Fine-Failing? Debunking Performance Myths in Large Language Models [0.8399688944263842]
大きな言語モデル(LLM)は、入力クエリから人間のようなテキストを理解し、生成する能力を持つ。
本研究では、この概念を、レトリーバル拡張生成(RAG)パイプライン内のLLMの統合に拡張する。
データ抽出と文脈理解における微調整がLLMの能力に与える影響を評価する。
論文 参考訳(メタデータ) (2024-06-17T04:35:17Z) - A Two-Phase Recall-and-Select Framework for Fast Model Selection [13.385915962994806]
本稿では,2相モデル選択フレームワークを提案する。
これは、ベンチマークデータセット上でモデルのトレーニングパフォーマンスを活用することにより、堅牢なモデルを選択する効率を高めることを目的としている。
提案手法は,従来のベースライン法に比べて約3倍の速度でハイパフォーマンスモデルの選択を容易にすることが実証された。
論文 参考訳(メタデータ) (2024-03-28T14:44:44Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
本稿では,データセットにおける不正確で曖昧な嗜好の影響を軽減するために,一連の新しい手法を紹介する。
また、選択された応答と拒否された応答を区別する報酬モデルの有用性を高めるために、対照的な学習を導入する。
論文 参考訳(メタデータ) (2024-01-11T17:56:59Z) - Mitigating Shortcut Learning with Diffusion Counterfactuals and Diverse Ensembles [95.49699178874683]
拡散確率モデル(DPM)を利用したアンサンブル多様化フレームワークDiffDivを提案する。
DPMは、相関した入力特徴を示すサンプルを用いて訓練しても、新しい特徴の組み合わせで画像を生成することができることを示す。
そこで本研究では,DPM誘導の多様化は,教師付き信号の追加を必要とせず,ショートカットキューへの依存を取り除くのに十分であることを示す。
論文 参考訳(メタデータ) (2023-11-23T15:47:33Z) - Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts
in Underspecified Visual Tasks [92.32670915472099]
拡散確率モデル(DPM)を用いた合成カウンターファクトの生成を利用したアンサンブルの多様化フレームワークを提案する。
拡散誘導型分散化は,データ収集を必要とする従来の手法に匹敵するアンサンブル多様性を達成し,ショートカットからの注意を回避できることを示す。
論文 参考訳(メタデータ) (2023-10-03T17:37:52Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - Are Sample-Efficient NLP Models More Robust? [90.54786862811183]
サンプル効率(所定のID精度に到達するために必要なデータ量)とロバスト性(OOD評価モデルの評価方法)の関係について検討する。
高いサンプル効率は、いくつかのモデリング介入やタスクにおいて、より平均的なOODロバスト性にのみ相関するが、それ以外は相関しない。
これらの結果から,サンプル効率向上のための汎用手法は,データセットとタスクに依存した汎用的なOODロバスト性向上をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2022-10-12T17:54:59Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Multitarget Tracking with Transformers [21.81266872964314]
マルチターゲットトラッキング(MTT)は、ノイズの多い測定を使用して未知のオブジェクトの数の状態を追跡する問題です。
本稿では,Transformer アーキテクチャに基づく MTT の高性能深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-04-01T19:14:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。