論文の概要: A Context-Sensitive Approach to XAI in Music Performance
- arxiv url: http://arxiv.org/abs/2309.04491v1
- Date: Tue, 5 Sep 2023 17:43:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-17 13:58:49.883208
- Title: A Context-Sensitive Approach to XAI in Music Performance
- Title(参考訳): 音楽演奏におけるXAIの文脈感的アプローチ
- Authors: Nicola Privato and Jack Armitage
- Abstract要約: 音楽演奏におけるXAIのための説明的プラグマティズム(EP)フレームワークを提案する。
EPは、幅広い芸術的応用におけるAIシステムの透明性と解釈可能性を高めるための有望な方向を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapidly evolving field of Explainable Artificial Intelligence (XAI) has
generated significant interest in developing methods to make AI systems more
transparent and understandable. However, the problem of explainability cannot
be exhaustively solved in the abstract, as there is no single approach that can
be universally applied to generate adequate explanations for any given AI
system, and this is especially true in the arts. In this position paper, we
propose an Explanatory Pragmatism (EP) framework for XAI in music performance,
emphasising the importance of context and audience in the development of
explainability requirements. By tailoring explanations to specific audiences
and continuously refining them based on feedback, EP offers a promising
direction for enhancing the transparency and interpretability of AI systems in
broad artistic applications and more specifically to music performance.
- Abstract(参考訳): 説明可能な人工知能(XAI)の急速に発展する分野は、AIシステムをより透明で理解しやすいものにする方法の開発に多大な関心を集めている。
しかしながら、任意のaiシステムに対して適切な説明を生成するために普遍的に適用できる単一のアプローチが存在しないため、説明可能性の問題は抽象的には徹底的には解決できない。
本稿では,音楽演奏におけるXAIのための説明的プラグマティズム(EP)フレームワークを提案する。
特定のオーディエンスに説明を調整し、フィードバックに基づいて継続的に修正することで、EPは幅広い芸術的応用、特に音楽パフォーマンスにおいて、AIシステムの透明性と解釈可能性を高めるための有望な方向性を提供する。
関連論文リスト
- Cutting Through the Confusion and Hype: Understanding the True Potential of Generative AI [0.0]
本稿では,生成型AI(genAI)の微妙な景観について考察する。
それは、Large Language Models (LLMs)のようなニューラルネットワークベースのモデルに焦点を当てている。
論文 参考訳(メタデータ) (2024-10-22T02:18:44Z) - Applications of Explainable artificial intelligence in Earth system science [12.454478986296152]
このレビューは、説明可能なAI(XAI)の基礎的な理解を提供することを目的としている。
XAIはモデルをより透明にする強力なツールセットを提供する。
我々は、地球系科学(ESS)において、XAIが直面する4つの重要な課題を識別する。
AIモデルは未知を探索し、XAIは説明を提供することでギャップを埋める。
論文 参考訳(メタデータ) (2024-06-12T15:05:29Z) - Emergent Explainability: Adding a causal chain to neural network
inference [0.0]
本稿では,創発的コミュニケーション(EmCom)による説明可能な人工知能(xAI)の強化のための理論的枠組みを提案する。
我々は、EmComのAIシステムへの新たな統合を探求し、入力と出力の間の従来の連想関係から、より微妙で因果的解釈へのパラダイムシフトを提供する。
本稿は、このアプローチの理論的基盤、潜在的に広い応用、そして、責任と透明なAIシステムに対するニーズの増大と整合性について論じる。
論文 参考訳(メタデータ) (2024-01-29T02:28:39Z) - Beyond XAI:Obstacles Towards Responsible AI [0.0]
説明可能性の方法とその評価戦略は、現実世界の文脈に多くの制限を与える。
本稿では、これらの制限について検討し、責任あるAIの搭乗者コンテキストにおけるそれらの影響について論じる。
論文 参考訳(メタデータ) (2023-09-07T11:08:14Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
本稿では,知識グラフ拡張ネットワーク(KGAN)を提案する。
KGANは感情の特徴表現を、文脈、構文、知識に基づく複数の視点から捉えている。
3つの人気のあるABSAベンチマークの実験は、我々のKGANの有効性と堅牢性を示している。
論文 参考訳(メタデータ) (2022-01-13T08:25:53Z) - Making Things Explainable vs Explaining: Requirements and Challenges
under the GDPR [2.578242050187029]
ExplanatorY AI(YAI)はXAI上に構築され、説明可能な情報の収集と整理を目的としている。
本稿では,自動意思決定システム(ADM)について,説明空間上の適切な経路を特定するための説明を生成する問題について述べる。
論文 参考訳(メタデータ) (2021-10-02T08:48:47Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。