Quantum Algorithm for Maximum Biclique Problem
- URL: http://arxiv.org/abs/2309.04503v1
- Date: Fri, 8 Sep 2023 04:43:05 GMT
- Title: Quantum Algorithm for Maximum Biclique Problem
- Authors: Xiaofan Li, Prasenjit Mitra, Rui Zhou, and Wolfgang Nejdl
- Abstract summary: Identifying a biclique with the maximum number of edges bears considerable implications for numerous fields of application.
We propose a ground-breaking algorithm qMBS with time complexity O*(2(n/2)), illustrating a quadratic speed-up in terms of complexity compared to the state-of-the-art.
We detail two variants tailored for the maximum biclique problem and the maximum balanced biclique problem.
- Score: 11.96554895748371
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying a biclique with the maximum number of edges bears considerable
implications for numerous fields of application, such as detecting anomalies in
E-commerce transactions, discerning protein-protein interactions in biology,
and refining the efficacy of social network recommendation algorithms. However,
the inherent NP-hardness of this problem significantly complicates the matter.
The prohibitive time complexity of existing algorithms is the primary
bottleneck constraining the application scenarios. Aiming to address this
challenge, we present an unprecedented exploration of a quantum computing
approach. Efficient quantum algorithms, as a crucial future direction for
handling NP-hard problems, are presently under intensive investigation, of
which the potential has already been proven in practical arenas such as
cybersecurity. However, in the field of quantum algorithms for graph databases,
little work has been done due to the challenges presented by the quantum
representation of complex graph topologies. In this study, we delve into the
intricacies of encoding a bipartite graph on a quantum computer. Given a
bipartite graph with n vertices, we propose a ground-breaking algorithm qMBS
with time complexity O^*(2^(n/2)), illustrating a quadratic speed-up in terms
of complexity compared to the state-of-the-art. Furthermore, we detail two
variants tailored for the maximum vertex biclique problem and the maximum
balanced biclique problem. To corroborate the practical performance and
efficacy of our proposed algorithms, we have conducted proof-of-principle
experiments utilizing IBM quantum simulators, of which the results provide a
substantial validation of our approach to the extent possible to date.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Variational Quantum Algorithms for the Allocation of Resources in a Cloud/Edge Architecture [1.072460284847973]
We show that Variational Quantum Algorithms can be a viable alternative to classical algorithms in the near future.
In particular, we compare the performances, in terms of success probability, of two algorithms, i.e., Quantum Approximate Optimization Algorithm (QAOA) and Variational Quantum Eigensolver (VQE)
The simulation experiments, performed for a set of simple problems, %CM230124 that involve a Cloud and two Edge nodes, show that the VQE algorithm ensures better performances when it is equipped with appropriate circuit textitansatzes that are able to restrict the search space
arXiv Detail & Related papers (2024-01-25T17:37:40Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Error Analysis of the Variational Quantum Eigensolver Algorithm [0.18188255328029254]
We study variational quantum eigensolver (VQE) and its individual quantum subroutines.
We show through explicit simulation that the VQE algorithm effectively collapses already when single errors occur during a quantum processing call.
arXiv Detail & Related papers (2023-01-18T02:02:30Z) - Solving various NP-Hard problems using exponentially fewer qubits on a
Quantum Computer [0.0]
NP-hard problems are not believed to be exactly solvable through general time algorithms.
In this paper, we build upon a proprietary methodology which logarithmically scales with problem size.
These algorithms are tested on a quantum simulator with graph sizes of over a hundred nodes and on a real quantum computer up to graph sizes of 256.
arXiv Detail & Related papers (2023-01-17T16:03:33Z) - Complexity-Theoretic Limitations on Quantum Algorithms for Topological
Data Analysis [59.545114016224254]
Quantum algorithms for topological data analysis seem to provide an exponential advantage over the best classical approach.
We show that the central task of TDA -- estimating Betti numbers -- is intractable even for quantum computers.
We argue that an exponential quantum advantage can be recovered if the input data is given as a specification of simplices.
arXiv Detail & Related papers (2022-09-28T17:53:25Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
Graph Edit Distance (GED) measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical.
In this paper we present a comparative study of two quantum approaches to computing GED.
arXiv Detail & Related papers (2021-11-19T12:35:26Z) - Polynomial T-depth Quantum Solvability of Noisy Binary Linear Problem:
From Quantum-Sample Preparation to Main Computation [0.0]
We present a complete analysis of the quantum solvability of the noisy binary linear problem (NBLP)
We show that the cost of solving the NBLP can be in the problem size, at the expense of an exponentially increasing logical qubits.
arXiv Detail & Related papers (2021-09-23T07:46:20Z) - Multiple Query Optimization using a Hybrid Approach of Classical and
Quantum Computing [1.7077661158850292]
We tackle the multiple query optimization problem (MQO) which is an important NP-hard problem in the area of data-intensive problems.
We propose a novel hybrid classical-quantum algorithm to solve the MQO on a gate-based quantum computer.
Our algorithm shows a qubit efficiency of close to 99% which is almost a factor of 2 higher compared to the state of the art implementation.
arXiv Detail & Related papers (2021-07-22T08:12:49Z) - The limits of min-max optimization algorithms: convergence to spurious
non-critical sets [82.74514886461257]
min-max optimization algorithms encounter problems far greater because of the existence of periodic cycles and similar phenomena.
We show that there exist algorithms that do not attract any points of the problem.
We illustrate such challenges in simple to almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost
arXiv Detail & Related papers (2020-06-16T10:49:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.