論文の概要: SSHNN: Semi-Supervised Hybrid NAS Network for Echocardiographic Image
Segmentation
- arxiv url: http://arxiv.org/abs/2309.04672v1
- Date: Sat, 9 Sep 2023 03:38:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 17:09:42.080243
- Title: SSHNN: Semi-Supervised Hybrid NAS Network for Echocardiographic Image
Segmentation
- Title(参考訳): SSHNN:心エコー画像分割のための半スーパービジョンハイブリッドNASネットワーク
- Authors: Renqi Chen, Jingjing Luo, Fan Nian, Yuhui Cen, Yiheng Peng and Zekuan
Yu
- Abstract要約: SSHNNと呼ばれる医用画像分割のための半教師付きハイブリッドNASネットワークを提案する。
SSHNNでは、詳細を失うのを避けるために、正規化されたスカラーの代わりに、レイヤワイズ機能融合における畳み込み操作を創造的に利用する。
具体的には,ラベル付き医用画像データセットの限られたボリューム問題を克服するために,半教師付きアルゴリズムであるMean-Teacherを実装した。
- 参考スコア(独自算出の注目度): 2.8358100463599722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate medical image segmentation especially for echocardiographic images
with unmissable noise requires elaborate network design. Compared with manual
design, Neural Architecture Search (NAS) realizes better segmentation results
due to larger search space and automatic optimization, but most of the existing
methods are weak in layer-wise feature aggregation and adopt a ``strong
encoder, weak decoder" structure, insufficient to handle global relationships
and local details. To resolve these issues, we propose a novel semi-supervised
hybrid NAS network for accurate medical image segmentation termed SSHNN. In
SSHNN, we creatively use convolution operation in layer-wise feature fusion
instead of normalized scalars to avoid losing details, making NAS a stronger
encoder. Moreover, Transformers are introduced for the compensation of global
context and U-shaped decoder is designed to efficiently connect global context
with local features. Specifically, we implement a semi-supervised algorithm
Mean-Teacher to overcome the limited volume problem of labeled medical image
dataset. Extensive experiments on CAMUS echocardiography dataset demonstrate
that SSHNN outperforms state-of-the-art approaches and realizes accurate
segmentation. Code will be made publicly available.
- Abstract(参考訳): 特にノイズのない心エコー図に対する正確な医用画像分割は,ネットワーク設計を精巧に行う必要がある。
手動設計と比較して、ニューラルネットワークサーチ(NAS)は、より大きな検索空間と自動最適化によるセグメンテーション結果の改善を実現するが、既存の手法のほとんどは層単位での機能集約が弱く、「強いエンコーダ、弱いデコーダ」構造を採用しており、グローバルな関係や局所的な詳細を扱うには不十分である。
そこで本研究では,sshnnと呼ばれる医用画像分割のための半教師付きハイブリッドnasネットワークを提案する。
SSHNNでは、正規化されたスカラーではなく階層的な機能融合で畳み込み操作を創造的に利用し、NASをエンコーダとして強化する。
さらに,グローバルコンテキストの補償のためにトランスフォーマーを導入し,グローバルコンテキストとローカル特徴を効率的に接続するU字型デコーダを設計した。
具体的には,ラベル付き医用画像データセットの容量制限問題を克服するために,半教師付きアルゴリズム平均教師を実装した。
camus echocardiographyデータセットの広範な実験は、sshnnが最先端のアプローチよりも優れ、正確なセグメンテーションを実現していることを示している。
コードは公開される予定だ。
関連論文リスト
- HCS-TNAS: Hybrid Constraint-driven Semi-supervised Transformer-NAS for Ultrasound Image Segmentation [0.34089646689382486]
超音波セグメンテーションのためのハイブリッド拘束駆動半教師型トランスフォーマー-NAS(HCS-TNAS)を提案する。
HCS-TNASは、ViTのアテンション計算の前に、マルチスケールトークン検索のための効率的なNAS-ViTモジュールを含み、より少ない計算コストでコンテキスト情報とローカル情報を効果的にキャプチャする。
公開データセットの実験では、HCS-TNASが最先端のパフォーマンスを達成し、超音波セグメンテーションの限界を押し上げることが示されている。
論文 参考訳(メタデータ) (2024-07-05T01:02:12Z) - BEFUnet: A Hybrid CNN-Transformer Architecture for Precise Medical Image
Segmentation [0.0]
本稿では,医療画像の正確な分割のために,身体情報とエッジ情報の融合を強化するBEFUnetという,革新的なU字型ネットワークを提案する。
BEFUnetは、新しいローカル・クロス・アテンション・フィーチャー(LCAF)融合モジュール、新しいダブル・レベル・フュージョン(DLF)モジュール、デュアルブランチ・エンコーダの3つの主要モジュールから構成されている。
LCAFモジュールは、2つのモダリティの間に空間的に近接する特徴に対して、局所的な相互注意を選択的に行うことにより、エッジとボディの特徴を効率よく融合させる。
論文 参考訳(メタデータ) (2024-02-13T21:03:36Z) - BRAU-Net++: U-Shaped Hybrid CNN-Transformer Network for Medical Image Segmentation [11.986549780782724]
医用画像の正確な分割作業のために,BRAU-Net++ というハイブリッドで効果的な CNN-Transformer ネットワークを提案する。
具体的には、BRAU-Net++は、U字型エンコーダデコーダ構造を設計するために、コアビルディングブロックとしてバイレベルルーティングアテンションを使用する。
提案手法は,そのベースラインであるBRAU-Netを含む,最先端の手法を超越した手法である。
論文 参考訳(メタデータ) (2024-01-01T10:49:09Z) - CMUNeXt: An Efficient Medical Image Segmentation Network based on Large
Kernel and Skip Fusion [11.434576556863934]
CMUNeXtは、効率的な完全畳み込み軽量医療画像セグメンテーションネットワークである。
実際のシーンシナリオにおいて、迅速かつ正確な補助診断を可能にする。
論文 参考訳(メタデータ) (2023-08-02T15:54:00Z) - BCS-Net: Boundary, Context and Semantic for Automatic COVID-19 Lung
Infection Segmentation from CT Images [83.82141604007899]
BCS-Netは、CT画像から自動的に新型コロナウイルスの肺感染症を分離するための新しいネットワークである。
BCS-Netはエンコーダ-デコーダアーキテクチャに従っており、多くの設計はデコーダのステージに焦点を当てている。
BCSRブロックでは、アテンション誘導グローバルコンテキスト(AGGC)モジュールがデコーダの最も価値のあるエンコーダ機能を学ぶように設計されている。
論文 参考訳(メタデータ) (2022-07-17T08:54:07Z) - Small Lesion Segmentation in Brain MRIs with Subpixel Embedding [105.1223735549524]
ヒト脳のMRIスキャンを虚血性脳梗塞と正常組織に分割する方法を提案する。
本稿では,空間展開埋め込みネットワークによって予測を導出する標準エンコーダデコーダの形式でニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-09-18T00:21:17Z) - Dynamic Neural Representational Decoders for High-Resolution Semantic
Segmentation [98.05643473345474]
動的ニューラル表現デコーダ(NRD)と呼ばれる新しいデコーダを提案する。
エンコーダの出力上の各位置がセマンティックラベルの局所的なパッチに対応するので、この研究では、これらの局所的なパッチをコンパクトなニューラルネットワークで表現する。
このニューラル表現により、意味ラベル空間に先行する滑らかさを活用することができ、デコーダをより効率的にすることができる。
論文 参考訳(メタデータ) (2021-07-30T04:50:56Z) - Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation [63.46694853953092]
Swin-Unetは、医用画像セグメンテーション用のUnetライクなトランスフォーマーである。
トークン化されたイメージパッチは、TransformerベースのU字型デコーダデコーダアーキテクチャに供給される。
論文 参考訳(メタデータ) (2021-05-12T09:30:26Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
医用画像のセグメンテーションは医療システムの開発に必須の前提条件である。
様々な医療画像セグメンテーションタスクにおいて、U-Netとして知られるu字型アーキテクチャがデファクトスタンダードとなっている。
医用画像セグメンテーションの強力な代替手段として,トランスフォーマーとU-Netの両方を有効活用するTransUNetを提案する。
論文 参考訳(メタデータ) (2021-02-08T16:10:50Z) - Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
with Transformers [149.78470371525754]
セマンティックセグメンテーションをシーケンスからシーケンスへの予測タスクとして扱う。
具体的には、イメージをパッチのシーケンスとしてエンコードするために純粋なトランスをデプロイします。
トランスのすべての層でモデル化されたグローバルコンテキストにより、このエンコーダは、SETR(SEgmentation TRansformer)と呼ばれる強力なセグメンテーションモデルを提供するための単純なデコーダと組み合わせることができる。
SETRはADE20K(50.28% mIoU)、Pascal Context(55.83% mIoU)、およびCityscapesの競争力のある結果に関する最新技術を達成している。
論文 参考訳(メタデータ) (2020-12-31T18:55:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。