Advantage Actor-Critic with Reasoner: Explaining the Agent's Behavior
from an Exploratory Perspective
- URL: http://arxiv.org/abs/2309.04707v1
- Date: Sat, 9 Sep 2023 07:19:20 GMT
- Title: Advantage Actor-Critic with Reasoner: Explaining the Agent's Behavior
from an Exploratory Perspective
- Authors: Muzhe Guo, Feixu Yu, Tian Lan, Fang Jin
- Abstract summary: We propose a novel Advantage Actor-Critic with Reasoner (A2CR)
A2CR automatically generates a more comprehensive and interpretable paradigm for understanding the agent's decision-making process.
It offers a range of functionalities such as purpose-based saliency, early failure detection, and model supervision.
- Score: 19.744322603358402
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) is a powerful tool for solving complex
decision-making problems, but its lack of transparency and interpretability has
been a major challenge in domains where decisions have significant real-world
consequences. In this paper, we propose a novel Advantage Actor-Critic with
Reasoner (A2CR), which can be easily applied to Actor-Critic-based RL models
and make them interpretable. A2CR consists of three interconnected networks:
the Policy Network, the Value Network, and the Reasoner Network. By predefining
and classifying the underlying purpose of the actor's actions, A2CR
automatically generates a more comprehensive and interpretable paradigm for
understanding the agent's decision-making process. It offers a range of
functionalities such as purpose-based saliency, early failure detection, and
model supervision, thereby promoting responsible and trustworthy RL.
Evaluations conducted in action-rich Super Mario Bros environments yield
intriguing findings: Reasoner-predicted label proportions decrease for
``Breakout" and increase for ``Hovering" as the exploration level of the RL
algorithm intensifies. Additionally, purpose-based saliencies are more focused
and comprehensible.
Related papers
- Semifactual Explanations for Reinforcement Learning [1.5320737596132754]
Reinforcement Learning (RL) is a learning paradigm in which the agent learns from its environment through trial and error.
Deep reinforcement learning (DRL) algorithms represent the agent's policies using neural networks, making their decisions difficult to interpret.
Explaining the behaviour of DRL agents is necessary to advance user trust, increase engagement, and facilitate integration with real-life tasks.
arXiv Detail & Related papers (2024-09-09T08:37:47Z) - Leveraging Reward Consistency for Interpretable Feature Discovery in
Reinforcement Learning [69.19840497497503]
It is argued that the commonly used action matching principle is more like an explanation of deep neural networks (DNNs) than the interpretation of RL agents.
We propose to consider rewards, the essential objective of RL agents, as the essential objective of interpreting RL agents.
We verify and evaluate our method on the Atari 2600 games as well as Duckietown, a challenging self-driving car simulator environment.
arXiv Detail & Related papers (2023-09-04T09:09:54Z) - Global and Local Analysis of Interestingness for Competency-Aware Deep
Reinforcement Learning [0.0]
We extend a recently-proposed framework for explainable reinforcement learning (RL) based on analyses of "interestingness"
Our tools provide insights about RL agent competence, both their capabilities and limitations, enabling users to make more informed decisions.
arXiv Detail & Related papers (2022-11-11T17:48:42Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Collective eXplainable AI: Explaining Cooperative Strategies and Agent
Contribution in Multiagent Reinforcement Learning with Shapley Values [68.8204255655161]
This study proposes a novel approach to explain cooperative strategies in multiagent RL using Shapley values.
Results could have implications for non-discriminatory decision making, ethical and responsible AI-derived decisions or policy making under fairness constraints.
arXiv Detail & Related papers (2021-10-04T10:28:57Z) - Explainable Reinforcement Learning for Broad-XAI: A Conceptual Framework
and Survey [0.7366405857677226]
Reinforcement Learning (RL) methods provide a potential backbone for the cognitive model required for the development of Broad-XAI.
RL represents a suite of approaches that have had increasing success in solving a range of sequential decision-making problems.
This paper aims to introduce a conceptual framework, called the Causal XRL Framework (CXF), that unifies the current XRL research and uses RL as a backbone to the development of Broad-XAI.
arXiv Detail & Related papers (2021-08-20T05:18:50Z) - Explore and Control with Adversarial Surprise [78.41972292110967]
Reinforcement learning (RL) provides a framework for learning goal-directed policies given user-specified rewards.
We propose a new unsupervised RL technique based on an adversarial game which pits two policies against each other to compete over the amount of surprise an RL agent experiences.
We show that our method leads to the emergence of complex skills by exhibiting clear phase transitions.
arXiv Detail & Related papers (2021-07-12T17:58:40Z) - Agent-Centric Representations for Multi-Agent Reinforcement Learning [12.577354830985012]
We investigate whether object-centric representations are also beneficial in the fully cooperative multi-agent reinforcement learning setting.
Specifically, we study two ways of incorporating an agent-centric inductive bias into our RL algorithm.
We evaluate these approaches on the Google Research Football environment as well as DeepMind Lab 2D.
arXiv Detail & Related papers (2021-04-19T15:43:40Z) - Reinforcement Learning for Sparse-Reward Object-Interaction Tasks in a
First-person Simulated 3D Environment [73.9469267445146]
First-person object-interaction tasks in high-fidelity, 3D, simulated environments such as the AI2Thor pose significant sample-efficiency challenges for reinforcement learning agents.
We show that one can learn object-interaction tasks from scratch without supervision by learning an attentive object-model as an auxiliary task.
arXiv Detail & Related papers (2020-10-28T19:27:26Z) - Maximizing Information Gain in Partially Observable Environments via
Prediction Reward [64.24528565312463]
This paper tackles the challenge of using belief-based rewards for a deep RL agent.
We derive the exact error between negative entropy and the expected prediction reward.
This insight provides theoretical motivation for several fields using prediction rewards.
arXiv Detail & Related papers (2020-05-11T08:13:49Z) - Self-Supervised Discovering of Interpretable Features for Reinforcement
Learning [40.52278913726904]
We propose a self-supervised interpretable framework for deep reinforcement learning.
A self-supervised interpretable network (SSINet) is employed to produce fine-grained attention masks for highlighting task-relevant information.
We verify and evaluate our method on several Atari 2600 games as well as Duckietown, which is a challenging self-driving car simulator environment.
arXiv Detail & Related papers (2020-03-16T08:26:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.