論文の概要: HAct: Out-of-Distribution Detection with Neural Net Activation
Histograms
- arxiv url: http://arxiv.org/abs/2309.04837v2
- Date: Tue, 17 Oct 2023 19:34:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-19 19:29:46.377759
- Title: HAct: Out-of-Distribution Detection with Neural Net Activation
Histograms
- Title(参考訳): HAct:ニューラルネット活性化ヒストグラムを用いた分布外検出
- Authors: Sudeepta Mondal and Ganesh Sundaramoorthi
- Abstract要約: 本稿では,OOD検出のための新しい記述子HActを提案する。すなわち,入力データの影響下でのニューラルネットワーク層の出力値の確率分布(ヒストグラムで近似)について述べる。
複数の画像分類ベンチマークにおいて,HActはOOD検出における最先端技術よりもはるかに精度が高いことを示す。
- 参考スコア(独自算出の注目度): 7.795929277007233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a simple, efficient, and accurate method for detecting
out-of-distribution (OOD) data for trained neural networks. We propose a novel
descriptor, HAct - activation histograms, for OOD detection, that is,
probability distributions (approximated by histograms) of output values of
neural network layers under the influence of incoming data. We formulate an OOD
detector based on HAct descriptors. We demonstrate that HAct is significantly
more accurate than state-of-the-art in OOD detection on multiple image
classification benchmarks. For instance, our approach achieves a true positive
rate (TPR) of 95% with only 0.03% false-positives using Resnet-50 on standard
OOD benchmarks, outperforming previous state-of-the-art by 20.67% in the false
positive rate (at the same TPR of 95%). The computational efficiency and the
ease of implementation makes HAct suitable for online implementation in
monitoring deployed neural networks in practice at scale.
- Abstract(参考訳): 本稿では,トレーニングニューラルネットワークの配布外データ(OOD)を簡易かつ効率的に検出する手法を提案する。
本稿では,入力データの影響下でのニューラルネットワーク層の出力値の確率分布(ヒストグラム近似)をood検出するための新しい記述子hact-アクティベーションヒストグラムを提案する。
HAct記述子に基づいてOOD検出器を定式化する。
複数の画像分類ベンチマークにおいて,HActはOOD検出における最先端技術よりもはるかに精度が高いことを示す。
例えば、我々の手法は標準OODベンチマークでResnet-50を用いて0.03%の偽陽性で95%の真正率(TPR)を達成し、偽陽性率を20.67%上回った(同じTPRの95%)。
計算効率と実装の容易さにより、HActは大規模にデプロイされたニューラルネットワークを監視できるオンライン実装に適している。
関連論文リスト
- Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
我々はtextbfDistribution textbfDetection (abbr) のための非パラメトリックテスト時間 textbfAdaptation フレームワークを提案する。
Abbrは、オンラインテストサンプルを使用して、テスト中のモデル適応、データ分散の変更への適応性を向上させる。
複数のOOD検出ベンチマークにおける包括的実験により,abrの有効性を示す。
論文 参考訳(メタデータ) (2023-11-28T02:00:47Z) - Classifier-head Informed Feature Masking and Prototype-based Logit
Smoothing for Out-of-Distribution Detection [27.062465089674763]
ニューラルネットワークを現実世界にデプロイする際には、アウト・オブ・ディストリビューション(OOD)検出が不可欠である。
1つの大きな課題は、ニューラルネットワークがOODデータに対して過信的な予測をすることです。
本稿では,新しい特徴マスキング戦略と新しいロジット平滑化戦略に基づく,効果的なポストホックOOD検出手法を提案する。
論文 参考訳(メタデータ) (2023-10-27T12:42:17Z) - Scaling for Training Time and Post-hoc Out-of-distribution Detection
Enhancement [41.650761556671775]
本稿では,最近の最先端のアウト・オブ・ディストリビューション(OOD)検出手法に関する知見と分析を行う。
我々は,活性化拡大がOOD検出に有害な影響を及ぼす一方で,活性化スケーリングが促進されることを実証した。
OpenOOD v1.5 ImageNet-1Kベンチマークで、AUROCスコアは、近OODでは+1.85%、遠OODデータセットでは+0.74%である。
論文 参考訳(メタデータ) (2023-09-30T02:10:54Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need [52.88953913542445]
簡単な再構築手法を用いることで,OOD検出の性能が大幅に向上する可能性が示唆された。
我々は、OOD検出フレームワーク(MOOD)のプリテキストタスクとして、マスケ画像モデリング(Masked Image Modeling)を採用する。
論文 参考訳(メタデータ) (2023-02-06T08:24:41Z) - XOOD: Extreme Value Based Out-Of-Distribution Detection For Image
Classification [1.1866955981399967]
我々は、画像分類のための新しい極値に基づくOOD検出フレームワークXOODを提案する。
どちらのアルゴリズムも、ニューラルネットワークのアクティベーション層におけるデータの極端な値によって捕捉される信号に依存している。
XOOD-MとXOOD-Lは、多くのベンチマークデータセット上で、効率と精度の両方で、最先端のOOD検出方法より優れていることを示す。
論文 参考訳(メタデータ) (2022-08-01T06:22:33Z) - A Simple Test-Time Method for Out-of-Distribution Detection [45.11199798139358]
本稿では,OOD検出のための簡易なテスト時間線形訓練法を提案する。
分布外である入力画像の確率は、ニューラルネットワークが抽出した特徴と驚くほど線形に相関していることがわかった。
本稿では,提案手法のオンライン版を提案し,実世界のアプリケーションでより実用的な性能を実現する。
論文 参考訳(メタデータ) (2022-07-17T16:02:58Z) - ReAct: Out-of-distribution Detection With Rectified Activations [20.792140933660075]
オフ・オブ・ディストリビューション (OOD) 検出は, 実用的重要性から近年注目されている。
主な課題の1つは、モデルがしばしばOODデータに対して高い信頼性の予測を生成することである。
我々は,OODデータに対するモデル過信を低減するためのシンプルで効果的な手法であるReActを提案する。
論文 参考訳(メタデータ) (2021-11-24T21:02:07Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
ディープニューラルネットワークは、アウト・オブ・ディストリビューション(OOD)データに対する高い過度な予測を生成することが知られている。
本稿では,認証可能なOOD検出器を標準分類器と組み合わせてOOD認識分類器を提案する。
このようにして、我々は2つの世界のベストを達成している。OOD検出は、分布内に近いOODサンプルであっても、予測精度を損なうことなく、非操作型OODデータに対する最先端のOOD検出性能に近接する。
論文 参考訳(メタデータ) (2021-06-08T11:40:49Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T16:55:13Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。