論文の概要: What's Hard in English RST Parsing? Predictive Models for Error Analysis
- arxiv url: http://arxiv.org/abs/2309.04940v1
- Date: Sun, 10 Sep 2023 06:10:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 15:27:12.367515
- Title: What's Hard in English RST Parsing? Predictive Models for Error Analysis
- Title(参考訳): 英語のRSTパーシングで何が難しいのか?
誤差解析のための予測モデル
- Authors: Yang Janet Liu and Tatsuya Aoyama and Amir Zeldes
- Abstract要約: 本稿では, 修辞構造論における解析困難に関連する要因について検討し, モデル化する。
以上の結果から,浅層談話解析において明示的・単純的区別が重要な役割を担っているが,長距離依存が主な課題であることが明らかとなった。
最終モデルは、ボトムアップで76.3%、トップダウンで76.6%の精度でエラーが発生するかを予測できる。
- 参考スコア(独自算出の注目度): 16.927386793787463
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite recent advances in Natural Language Processing (NLP), hierarchical
discourse parsing in the framework of Rhetorical Structure Theory remains
challenging, and our understanding of the reasons for this are as yet limited.
In this paper, we examine and model some of the factors associated with parsing
difficulties in previous work: the existence of implicit discourse relations,
challenges in identifying long-distance relations, out-of-vocabulary items, and
more. In order to assess the relative importance of these variables, we also
release two annotated English test-sets with explicit correct and distracting
discourse markers associated with gold standard RST relations. Our results show
that as in shallow discourse parsing, the explicit/implicit distinction plays a
role, but that long-distance dependencies are the main challenge, while lack of
lexical overlap is less of a problem, at least for in-domain parsing. Our final
model is able to predict where errors will occur with an accuracy of 76.3% for
the bottom-up parser and 76.6% for the top-down parser.
- Abstract(参考訳): 近年の自然言語処理(nlp)の進歩にもかかわらず、修辞的構造理論の枠組みにおける階層的談話解析はいまだに困難であり、そのための理解はまだ限られている。
本稿では,先行研究における分析困難に関連する要因として,暗黙の談話関係の存在,長距離関係の特定における課題,語彙外項目などについて検討・モデル化する。
これらの変数の相対的重要性を評価するために、金標準rst関係に関連づけられた明示的な正解と注意をそそる談話マーカーを含む2つの注釈付き英語テストセットをリリースする。
その結果, 浅い談話解析では, 明示的/単純化的な区別が役割を担っているが, 長距離依存が主な課題であり, 語彙重複の欠如は問題ではなく, 少なくともドメイン内解析では問題ではないことがわかった。
最終モデルは、ボトムアップパーサーで76.3%、トップダウンパーサーで76.6%の精度でエラーが発生するかを予測できる。
関連論文リスト
- Urdu Dependency Parsing and Treebank Development: A Syntactic and Morphological Perspective [0.0]
依存関係解析を用いて、ウルドゥー語でニュース記事を分析する。
最良ラベル付き精度(LA)は70%,未ラベル付きアタッチメントスコア(UAS)は84%であった。
論文 参考訳(メタデータ) (2024-06-13T19:30:32Z) - Syntactic Language Change in English and German: Metrics, Parsers, and Convergences [56.47832275431858]
本論文は,過去160年間の議会討論のコーパスを用いて,英語とドイツ語の統語的言語変化のダイアクロニックな傾向を考察する。
私たちは、広く使われているStanford Coreと、新しい4つの選択肢を含む5つの依存関係をベースとしています。
文長分布の尾部では,構文的尺度の変化が頻繁であることが明らかとなった。
論文 参考訳(メタデータ) (2024-02-18T11:46:16Z) - Structural Ambiguity and its Disambiguation in Language Model Based
Parsers: the Case of Dutch Clause Relativization [2.9950872478176627]
先行文の存在が相対的節の曖昧さをいかに解決するかを考察する。
その結果、証明ネットに基づくニューロシンボリックは、普遍的な依存関係に基づくアプローチよりも、データ偏差補正に対してよりオープンであることが示された。
論文 参考訳(メタデータ) (2023-05-24T09:04:18Z) - Topic-driven Distant Supervision Framework for Macro-level Discourse
Parsing [72.14449502499535]
テキストの内部修辞構造を解析する作業は、自然言語処理において難しい問題である。
近年のニューラルモデルの発展にもかかわらず、トレーニングのための大規模で高品質なコーパスの欠如は大きな障害となっている。
近年の研究では、遠方の監督を用いてこの制限を克服しようと試みている。
論文 参考訳(メタデータ) (2023-05-23T07:13:51Z) - ChatGPT Evaluation on Sentence Level Relations: A Focus on Temporal,
Causal, and Discourse Relations [52.26802326949116]
対話型大規模言語モデルChatGPTの性能を,文間関係に基づいて定量的に評価する。
ChatGPTは因果関係の検出と推論において極めて優れた能力を示す。
既存の明示的な談話接続物との談話関係の大多数を特定できるが、暗黙的な談話関係は依然として恐ろしい課題である。
論文 参考訳(メタデータ) (2023-04-28T13:14:36Z) - Let's be explicit about that: Distant supervision for implicit discourse
relation classification via connective prediction [0.0]
暗黙の談話関係分類では,任意の談話接続が存在しない場合,隣り合う文間の関係を予測したい。
我々は,暗黙関係の明示を通じてデータ不足を回避し,タスクを2つのサブプロブレム(言語モデリングと明示的談話関係分類)に減らした。
実験結果から,本手法は同等性能の代替モデルよりも遥かに単純であるにもかかわらず,最先端技術よりもはるかに優れていることが示された。
論文 参考訳(メタデータ) (2021-06-06T17:57:32Z) - Prosodic segmentation for parsing spoken dialogue [29.68201160277817]
パーシング音声対話は、相反や目印のない境界など、独特な困難を生じさせる。
以前の研究は、韻律が不自由なスピーチを解析するのに役立っていることを示した。
プロソディは金標準SU境界を効果的に置き換えることができることを示す。
論文 参考訳(メタデータ) (2021-05-26T16:30:16Z) - High-order Semantic Role Labeling [86.29371274587146]
本稿では,ニューラルセマンティックロールラベリングモデルのための高階グラフ構造を提案する。
これにより、モデルは孤立述語-引数対だけでなく、述語-引数対間の相互作用も明示的に考慮することができる。
CoNLL-2009ベンチマークの7つの言語に対する実験結果から、高次構造学習技術は強力なSRLモデルに有益であることが示された。
論文 参考訳(メタデータ) (2020-10-09T15:33:54Z) - Pareto Probing: Trading Off Accuracy for Complexity [87.09294772742737]
我々は,プローブの複雑性と性能の基本的なトレードオフを反映したプローブ計量について論じる。
係り受け解析による実験により,文脈表現と非文脈表現の統語的知識の幅広いギャップが明らかとなった。
論文 参考訳(メタデータ) (2020-10-05T17:27:31Z) - A Survey of Unsupervised Dependency Parsing [62.16714720135358]
教師なしの依存関係解析は、正しいパースツリーのアノテーションを持たない文から依存関係を学ぶことを目的としている。
その困難さにもかかわらず、教師なしの構文解析は、ほとんど無制限に注釈のないテキストデータを利用することができるため、興味深い研究方向である。
論文 参考訳(メタデータ) (2020-10-04T10:51:22Z) - A Survey of Syntactic-Semantic Parsing Based on Constituent and
Dependency Structures [14.714725860010724]
我々は、構文解析の最も一般的な2つの形式、すなわち構成解析と依存性解析に焦点を当てている。
本稿では、構成解析と依存性解析の代表モデルと、リッチセマンティクスによる依存性解析について概説する。
論文 参考訳(メタデータ) (2020-06-19T10:21:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。