Multi-view Self-supervised Disentanglement for General Image Denoising
- URL: http://arxiv.org/abs/2309.05049v1
- Date: Sun, 10 Sep 2023 14:54:44 GMT
- Title: Multi-view Self-supervised Disentanglement for General Image Denoising
- Authors: Hao Chen, Chenyuan Qu, Yu Zhang, Chen Chen, Jianbo Jiao
- Abstract summary: We propose to learn to disentangle the noisy image, under the intuitive assumption that different corrupted versions of the same clean image share a common latent space.
A self-supervised learning framework is proposed to achieve the goal, without looking at the latent clean image.
By taking two different corrupted versions of the same image as input, the proposed Multi-view Self-supervised Disentanglement (MeD) approach learns to disentangle the latent clean features from the corruptions and recover the clean image consequently.
- Score: 22.28610604896056
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With its significant performance improvements, the deep learning paradigm has
become a standard tool for modern image denoisers. While promising performance
has been shown on seen noise distributions, existing approaches often suffer
from generalisation to unseen noise types or general and real noise. It is
understandable as the model is designed to learn paired mapping (e.g. from a
noisy image to its clean version). In this paper, we instead propose to learn
to disentangle the noisy image, under the intuitive assumption that different
corrupted versions of the same clean image share a common latent space. A
self-supervised learning framework is proposed to achieve the goal, without
looking at the latent clean image. By taking two different corrupted versions
of the same image as input, the proposed Multi-view Self-supervised
Disentanglement (MeD) approach learns to disentangle the latent clean features
from the corruptions and recover the clean image consequently. Extensive
experimental analysis on both synthetic and real noise shows the superiority of
the proposed method over prior self-supervised approaches, especially on unseen
novel noise types. On real noise, the proposed method even outperforms its
supervised counterparts by over 3 dB.
Related papers
- Low-Trace Adaptation of Zero-shot Self-supervised Blind Image Denoising [23.758547513866766]
We propose a trace-constraint loss function and low-trace adaptation Noise2Noise (LoTA-N2N) model to bridge the gap between self-supervised and supervised learning.
Our method achieves state-of-the-art performance within the realm of zero-shot self-supervised image denoising approaches.
arXiv Detail & Related papers (2024-03-19T02:47:33Z) - Masked Image Training for Generalizable Deep Image Denoising [53.03126421917465]
We present a novel approach to enhance the generalization performance of denoising networks.
Our method involves masking random pixels of the input image and reconstructing the missing information during training.
Our approach exhibits better generalization ability than other deep learning models and is directly applicable to real-world scenarios.
arXiv Detail & Related papers (2023-03-23T09:33:44Z) - Diffusion Model for Generative Image Denoising [17.897180118637856]
In supervised learning for image denoising, usually the paired clean images and noisy images are collected and synthesised to train a denoising model.
In this paper, we regard the denoising task as a problem of estimating the posterior distribution of clean images conditioned on noisy images.
arXiv Detail & Related papers (2023-02-05T14:53:07Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
We present Neighbor2Neighbor to train an effective image denoising model with only noisy images.
In detail, input and target used to train a network are images sub-sampled from the same noisy image.
A denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance.
arXiv Detail & Related papers (2021-01-08T02:03:25Z) - Unpaired Learning of Deep Image Denoising [80.34135728841382]
This paper presents a two-stage scheme by incorporating self-supervised learning and knowledge distillation.
For self-supervised learning, we suggest a dilated blind-spot network (D-BSN) to learn denoising solely from real noisy images.
Experiments show that our unpaired learning method performs favorably on both synthetic noisy images and real-world noisy photographs.
arXiv Detail & Related papers (2020-08-31T16:22:40Z) - Unsupervised Image Restoration Using Partially Linear Denoisers [2.3061446605472558]
We propose a class of structured denoisers that can be decomposed as the sum of a nonlinear image-dependent mapping, a linear noise-dependent term and a small residual term.
We show that these denoisers can be trained with only noisy images under the condition that the noise has zero mean and known variance.
Our method outperforms some recent unsupervised and self-supervised deep denoising models that do not require clean images for their training.
arXiv Detail & Related papers (2020-08-14T02:13:19Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
Real-world image noise removal is a long-standing yet very challenging task in computer vision.
We propose a novel unified framework to deal with the noise removal and noise generation tasks.
Our method learns the joint distribution of the clean-noisy image pairs.
arXiv Detail & Related papers (2020-07-12T09:16:06Z) - Fully Unsupervised Diversity Denoising with Convolutional Variational
Autoencoders [81.30960319178725]
We propose DivNoising, a denoising approach based on fully convolutional variational autoencoders (VAEs)
First we introduce a principled way of formulating the unsupervised denoising problem within the VAE framework by explicitly incorporating imaging noise models into the decoder.
We show that such a noise model can either be measured, bootstrapped from noisy data, or co-learned during training.
arXiv Detail & Related papers (2020-06-10T21:28:13Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.