Decoding quantum color codes with MaxSAT
- URL: http://arxiv.org/abs/2303.14237v3
- Date: Thu, 17 Oct 2024 10:53:38 GMT
- Title: Decoding quantum color codes with MaxSAT
- Authors: Lucas Berent, Lukas Burgholzer, Peter-Jan H. S. Derks, Jens Eisert, Robert Wille,
- Abstract summary: We propose a novel decoder for quantum color codes using a formulation as a MaxSAT problem based on the LightsOut puzzle.
We show that the decoding performance of the proposed decoder achieves state-of-the-art decoding performance on color codes.
- Score: 4.29377170477633
- License:
- Abstract: In classical computing, error-correcting codes are well established and are ubiquitous both in theory and practical applications. For quantum computing, error-correction is essential as well, but harder to realize, coming along with substantial resource overheads and being concomitant with needs for substantial classical computing. Quantum error-correcting codes play a central role on the avenue towards fault-tolerant quantum computation beyond presumed near-term applications. Among those, color codes constitute a particularly important class of quantum codes that have gained interest in recent years due to favourable properties over other codes. As in classical computing, decoding is the problem of inferring an operation to restore an uncorrupted state from a corrupted one and is central in the development of fault-tolerant quantum devices. In this work, we show how the decoding problem for color codes can be reduced to a slight variation of the well-known LightsOut puzzle. We propose a novel decoder for quantum color codes using a formulation as a MaxSAT problem based on this analogy. Furthermore, we optimize the MaxSAT construction and show numerically that the decoding performance of the proposed decoder achieves state-of-the-art decoding performance on color codes. The implementation of the decoder as well as tools to automatically conduct numerical experiments are publicly available as part of the Munich Quantum Toolkit (MQT) on GitHub.
Related papers
- Learning Linear Block Error Correction Codes [62.25533750469467]
We propose for the first time a unified encoder-decoder training of binary linear block codes.
We also propose a novel Transformer model in which the self-attention masking is performed in a differentiable fashion for the efficient backpropagation of the code gradient.
arXiv Detail & Related papers (2024-05-07T06:47:12Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
Quantum LDPC codes range from the surface code, which has a vanishing encoding rate, to very promising codes with constant encoding rate and linear distance.
We devise small quantum codes that are inspired by a subset of quantum LDPC codes, known as generalized bicycle (GB) codes.
arXiv Detail & Related papers (2024-01-15T10:38:13Z) - Facilitating Practical Fault-tolerant Quantum Computing Based on Color Codes [0.6963971634605797]
In this work, we address several key issues to facilitate practical fault-tolerant quantum computing based on color codes.
First, by introducing decoding graphs with error-rate-related weights, we obtained the threshold of $0.57%$ of the triangular color code.
Second, our work firstly investigates the circuit-level decoding of color code lattice surgery, and gives an efficient decoding algorithm.
Third, a new state injection protocol of the triangular color code is proposed, reducing the output magic state error rate in one round of 15 to 1 distillation by two orders of magnitude compared to a previous rough protocol.
arXiv Detail & Related papers (2023-09-11T03:56:18Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - Quantum spherical codes [55.33545082776197]
We introduce a framework for constructing quantum codes defined on spheres by recasting such codes as quantum analogues of the classical spherical codes.
We apply this framework to bosonic coding, obtaining multimode extensions of the cat codes that can outperform previous constructions.
arXiv Detail & Related papers (2023-02-22T19:00:11Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Decoding general error correcting codes and the role of complementarity [2.66269503676104]
We show that a decoding circuit for Calderbank-Shor-Stean (CSS) codes can be straightforwardly extended to that for a general QECC.
We then demonstrate the power of the decoding circuit in a toy model of the black hole information paradox.
arXiv Detail & Related papers (2022-10-13T01:44:26Z) - Software Tools for Decoding Quantum Low-Density Parity Check Codes [3.610459670994051]
We propose a set of software tools that allows to numerically experiment with so-called Quantum Low-Density Parity Check codes (QLDPC codes)
On top of that, we propose an efficient decoder that tackles the bottlenecks of the general QLDPC decoder.
These tools eventually allow to confirm theoretical results around QLDPC codes in a more practical setting.
arXiv Detail & Related papers (2022-09-02T17:22:01Z) - Quantum Error Correction via Noise Guessing Decoding [0.0]
Quantum error correction codes (QECCs) play a central role in both quantum communications and quantum computation.
This paper shows that it is possible to both construct and decode QECCs that can attain the maximum performance of the finite blocklength regime.
arXiv Detail & Related papers (2022-08-04T16:18:20Z) - Dense Coding with Locality Restriction for Decoder: Quantum Encoders vs.
Super-Quantum Encoders [67.12391801199688]
We investigate dense coding by imposing various locality restrictions to our decoder.
In this task, the sender Alice and the receiver Bob share an entangled state.
arXiv Detail & Related papers (2021-09-26T07:29:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.