Efficient two-qutrit gates in superconducting circuits using parametric coupling
- URL: http://arxiv.org/abs/2309.05766v2
- Date: Thu, 4 Apr 2024 14:17:46 GMT
- Title: Efficient two-qutrit gates in superconducting circuits using parametric coupling
- Authors: Mahadevan Subramanian, Adrian Lupascu,
- Abstract summary: We present a protocol to implement the universal gate for two qutrits based on a decomposition involving two partial state swaps and local operations.
This protocol has the potential to lead to fast and scalable two-qutrit gates in superconducting circuit architectures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, significant progress has been made in the demonstration of single qutrit and coupled qutrit gates with superconducting circuits. Coupled qutrit gates have significantly lower fidelity than single qutrit gates, owing to long implementation times. We present a protocol to implement the CZ universal gate for two qutrits based on a decomposition involving two partial state swaps and local operations. The partial state swaps can be implemented effectively using parametric coupling, which is fast and has the advantage of frequency selectivity. We perform a detailed analysis of this protocol in a system consisting of two fixed-frequency transmons coupled by a flux-tunable transmon. The application of an AC flux in the tunable transmon controls the parametric gates. This protocol has the potential to lead to fast and scalable two-qutrit gates in superconducting circuit architectures.
Related papers
- Multi-controlled single-qubit unitary gates based on the quantum Fourier transform [0.0]
Multi-controlled (MC) unitary (U) gates are widely employed in quantum algorithms and circuits.
Few state-of-the-art decompositions of MCU gates use non-elementary $C-R_x$ and $C-U1/2m-1$ gates.
Our approach is based on two generalizations of the multi-controlled X (MCX) gate.
arXiv Detail & Related papers (2024-08-01T21:56:02Z) - Realization of two-qubit gates and multi-body entanglement states in an asymmetric superconducting circuits [3.9488862168263412]
We propose a tunable fluxonium-transmon-transmon (FTT) cou pling scheme.
The asymmetric structure composed of fluxonium and transmon will optimize the frequency space and form a high fidelity two-qubit quantum gate.
We study the performance of this scheme by simulating the general single-qubit Xpi/2 gate and two-qubit (iSWAP) gate.
arXiv Detail & Related papers (2024-04-12T08:44:21Z) - Two qubits in one transmon -- QEC without ancilla hardware [68.8204255655161]
We show that it is theoretically possible to use higher energy levels for storing and controlling two qubits within a superconducting transmon.
The additional qubits could be used in algorithms which need many short-living qubits in error correction or by embedding effecitve higher connectivity in qubit networks.
arXiv Detail & Related papers (2023-02-28T16:18:00Z) - Fast and Robust Geometric Two-Qubit Gates for Superconducting Qubits and
beyond [0.0]
We propose a scheme to realize robust geometric two-qubit gates in multi-level qubit systems.
Our scheme is substantially simpler than STIRAP-based gates that have been proposed for atomic platforms.
We show how our gate can be accelerated using a shortcuts-to-adiabaticity approach.
arXiv Detail & Related papers (2022-08-08T16:22:24Z) - Controlled-Controlled-Phase Gates for Superconducting Qubits Mediated by
a Shared Tunable Coupler [0.0]
We investigate a system of three superconducting transmon-type qubits coupled via a single flux-tunable coupler.
tuning the frequency of the coupler by adiabatic flux pulses enables us to control the conditional energy shifts between the qubits.
Numerical simulations result in fidelities around 99 % and gate times below 300 ns.
arXiv Detail & Related papers (2022-06-24T17:47:11Z) - Microwave-activated gates between a fluxonium and a transmon qubit [59.95978973946985]
We propose and analyze two types of microwave-activated gates between a fluxonium and a transmon qubit.
For a medium-frequency fluxonium qubit, the transmon-fluxonium system allows for a cross-resonance effect mediated by the higher levels of the fluxonium.
A fast microwave CPHASE gate can be implemented using the higher levels of the fluxonium.
arXiv Detail & Related papers (2022-06-13T14:34:11Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Parallel entangling gate operations and two-way quantum communication in
spin chains [0.0]
We propose a protocol to parallelize the implementation of two-qubit entangling gates.
The proposed protocol can serve for realizing two-way quantum communication.
arXiv Detail & Related papers (2020-08-28T17:50:38Z) - Scalable quantum computation with fast gates in two-dimensional
microtrap arrays of trapped ions [68.8204255655161]
We investigate the use of fast pulsed two-qubit gates for trapped ion quantum computing in a two-dimensional microtrap architecture.
We demonstrate that fast pulsed gates are capable of implementing high-fidelity entangling operations between ions in neighbouring traps faster than the trapping period.
arXiv Detail & Related papers (2020-05-01T13:18:22Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.